Featured Research

from universities, journals, and other organizations

How protein networks stabilize muscle fibers: Same mechanism known for DNA now found for muscle proteins

Date:
January 23, 2012
Source:
Ruhr-Universitaet-Bochum
Summary:
The same mechanism that stabilizes the DNA in the cell nucleus is also important for the structure and function of vertebrate muscle cells. An enzyme attaches a methyl group to the protein Hsp90, which then forms a complex with the muscle protein titin. When the researchers disrupted this protein network through genetic manipulation in zebrafish the muscle structure partly disintegrated. The scientists have thus shown that methylation also plays a significant role outside the nucleus.

Protein complexes in a muscle cell: Myofibrils are the building blocks of muscle cells which show a regular cross-striated pattern (blue). These cells are elastic owing to the presence of the giant protein titin (red) in the myofibrils. Methylated heat shock protein Hsp90 binds together with the methyltransferase Smyd2 (green) to the elastic titin springs and stabilises them. The bottom right panel shows the co-localisation of Smyd2 and the elastic titin region.
Credit: Illustration: Prof. Wolfgang A. Linke

The same mechanism that stabilises the DNA in the cell nucleus is also important for the structure and function of vertebrate muscle cells. This has been established by RUB-researchers led by Prof. Dr. Wolfgang Linke (Institute of Physiology) in cooperation with American and German colleagues. An enzyme attaches a methyl group to the protein Hsp90, which then forms a complex with the muscle protein titin. When the researchers disrupted this protein network through genetic manipulation in zebrafish the muscle structure partly disintegrated. The scientists have thus shown that methylation also plays a significant role outside the nucleus.

They published their results in Genes and Development.

Methylation in the nucleus

Enzymes, called methyltransferases, transfer methyl (CH3) groups to specific sections of the DNA in the nucleus. In this way, they mark active and inactive regions of the genes. However, not only DNA but also nuclear proteins incur methylation, mostly at the amino acid lysine. Methylated lysines on nuclear proteins promote the formation of protein complexes that control, for example, DNA repair and replication. However, methyltransferases are not only found in the nucleus, but also in the cellular fluid (cytoplasm). Yet, it is not well established which proteins they methylate in the cytoplasm and how this methylation may affect function.

Shown for the first time: methylation in the cytoplasm promotes protein complex formation

The researchers first identified an enzyme which is mainly present in the cytoplasm and which methylates the amino acid lysine (Smyd2). Then they searched for interaction partners of the enzyme Smyd2 and found the heat shock protein Hsp90. The scientists went on to show that Smyd2 and methylated Hsp90 form a complex with the muscle protein titin. "Titin is the largest protein in the human body and known primarily for its role as an elastic spring in muscle cells" explains Linke. "Precisely this elastic region of titin is protected by the association with methylated Hsp90."

Titin requires protection by methylated proteins

In skeletal muscle cells of the zebrafish, Linke's team explored what happens when the protection by the methylated heat shock protein is repressed. By genetic manipulation they altered the organism in such a way that it no longer produced the enzyme Smyd2, which blocked the methylation of Hsp90. Without methylated Hsp90, the elastic titin region was unstable and muscle function strongly impaired; the regular muscle structure was partially disrupted.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. T. Donlin, C. Andresen, S. Just, E. Rudensky, C. T. Pappas, M. Kruger, E. Y. Jacobs, A. Unger, A. Zieseniss, M.-W. Dobenecker, T. Voelkel, B. T. Chait, C. C. Gregorio, W. Rottbauer, A. Tarakhovsky, W. A. Linke. Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes & Development, 2012; DOI: 10.1101/gad.177758.111

Cite This Page:

Ruhr-Universitaet-Bochum. "How protein networks stabilize muscle fibers: Same mechanism known for DNA now found for muscle proteins." ScienceDaily. ScienceDaily, 23 January 2012. <www.sciencedaily.com/releases/2012/01/120123094444.htm>.
Ruhr-Universitaet-Bochum. (2012, January 23). How protein networks stabilize muscle fibers: Same mechanism known for DNA now found for muscle proteins. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2012/01/120123094444.htm
Ruhr-Universitaet-Bochum. "How protein networks stabilize muscle fibers: Same mechanism known for DNA now found for muscle proteins." ScienceDaily. www.sciencedaily.com/releases/2012/01/120123094444.htm (accessed August 20, 2014).

Share This




More Plants & Animals News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins