Featured Research

from universities, journals, and other organizations

Scientists develop tools to make more complex biological machines from yeast

Date:
March 19, 2012
Source:
Imperial College London
Summary:
Scientists are one step closer to making more complex microscopic biological machines, following improvements in the way that they can "re-wire" DNA in yeast, according to new research.

Scientists are one step closer to making more complex microscopic biological machines, following improvements in the way that they can "re-wire" DNA in yeast, according to research recently published in the journal PLoS ONE.

The researchers, from Imperial College London, have demonstrated a way of creating a new type of biological "wire," using proteins that interact with DNA and behave like wires in electronic circuitry. The scientists say the advantage of their new biological wire is that it can be re-engineered over and over again to create potentially billions of connections between DNA components. Previously, scientists have had a limited number of "wires" available with which to link DNA components in biological machines, restricting the complexity that could be achieved.

The team has also developed more of the fundamental DNA components, called "promoters," which are needed for re-programming yeast to perform different tasks. Scientists currently have a very limited catalogue of components from which to engineer biological machines. By enlarging the components pool and making it freely available to the scientific community via rapid Open Access publication, the team in this new study aims to spur on development in the field of synthetic biology.

Future applications of this work could include tiny yeast-based machines that can be dropped into water supplies to detect contaminants, and yeast that records environmental conditions during the manufacture of biofuels to determine if improvements can be made to the production process.

Dr Tom Ellis, senior author of the paper from the Centre for Synthetic Biology and Innovation and the Department of Bioengineering at Imperial College London, says: "From viticulture to making bread, humans have been working with yeast for thousands of years to enhance society. Excitingly, our work is taking us closer to developing more complex biological machines with yeast. These tiny biological machines could help to improve things such as pollution monitoring and cleaner fuels, which could make a difference in all our lives."

Dr Benjamin Blount, first author of the paper from the Centre for Synthetic Biology and Innovation and the Department of Bioengineering at Imperial College London, says: "Our new approach to re-wiring yeast opens the door to an exciting array of more complex biological devices, including cells engineered to carry out tasks similar to computers."

In the study, the Imperial researchers modified a protein-based technology called TAL Effectors, which produce TALOR proteins, with similar qualities to wires in electronic devices. These TALORS can be easily re-engineered, which means that they can connect with many DNA-based components without causing a short circuit in the device.

The team says their research now provides biological engineers working in yeast with a valuable new toolbox.

Professor Richard Kitney, Co-Director of the Centre for Synthetic Biology and Innovation at the College, adds: "The work by Dr Ellis and the team at the Centre really takes us closer to developing much more complex biological machines with yeast, which may help to usher in a new age where biological machines could help to improve our health, the way we work, play and live."

Professor Paul Freemont, Co-Director of the Centre for Synthetic Biology and Innovation at the College, concludes: "One of the core aims of the Centre is to provide tools and resources to the wider scientific community by sharing our research. Dr Ellis's team has now begun to assemble characterised biological parts for yeast that will be available to researchers both in academia and industry."


Story Source:

The above story is based on materials provided by Imperial College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Benjamin A. Blount, Tim Weenink, Serge Vasylechko, Tom Ellis. Rational Diversification of a Promoter Providing Fine-Tuned Expression and Orthogonal Regulation for Synthetic Biology. PLoS ONE, 2012; 7 (3): e33279 DOI: 10.1371/journal.pone.0033279

Cite This Page:

Imperial College London. "Scientists develop tools to make more complex biological machines from yeast." ScienceDaily. ScienceDaily, 19 March 2012. <www.sciencedaily.com/releases/2012/03/120319194313.htm>.
Imperial College London. (2012, March 19). Scientists develop tools to make more complex biological machines from yeast. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2012/03/120319194313.htm
Imperial College London. "Scientists develop tools to make more complex biological machines from yeast." ScienceDaily. www.sciencedaily.com/releases/2012/03/120319194313.htm (accessed July 22, 2014).

Share This




More Plants & Animals News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

San Diego Zoo Welcomes New, Rare Rhino Calf

San Diego Zoo Welcomes New, Rare Rhino Calf

Reuters - US Online Video (July 21, 2014) An endangered black rhino baby is the newest resident at the San Diego Zoo. Sasha Salama reports. Video provided by Reuters
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
A Centuries' Old British Tradition Is Far from a Swan Song

A Centuries' Old British Tradition Is Far from a Swan Song

AFP (July 19, 2014) As if it weren't enough that the Queen is the Sovereign of the UK and 15 other Commonwealth realms, she is also the owner of all Britain's unmarked swans. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins