Featured Research

from universities, journals, and other organizations

How 'checkpoint' proteins bind chromosomes

Date:
April 20, 2012
Source:
University of Warwick
Summary:
New research has pinpointed the precise mechanism by which spindle checkpoint proteins bind chromosomes. The development of more effective cancer drugs could now be a step nearer.

The development of more effective cancer drugs could be a step nearer thanks to the discovery, by scientists at Warwick Medical School, of how an inbuilt 'security check' operates to guarantee cells divide with the correct number of chromosomes.

Most cells in our bodies contain 23 pairs of chromosomes that encode our individual genetic identities. The process of chromosome segregation is monitored by a system called the spindle checkpoint that ensures daughter cells receive the correct number of chromosomes.

If daughter cells receive an unequal number of chromosomes, known as 'aneuploidy', this drives normal cells to become cancerous. Indeed, the cells of aggressive human tumours are frequently 'aneuploid' with many components of the spindle checkpoint being mutated or mis-expressed. Therefore, determining how the spindle checkpoint operates is vital to understanding what causes, and what can prevent, the formation of tumours.

Current Biology has published research by Professor Jonathan Millar at the University of Warwick that pinpoints the precise mechanism by which spindle checkpoint proteins bind chromosomes.

Professor Millar explained: "Components of the spindle assembly checkpoint were first discovered 22 years ago by researchers in America and yet, until now, the binding sites for these proteins on chromosomes have remained unknown. We have been able to answer this question and as a result, we are now in a much better position to design more selective and effective drugs."

Currently, one of the most frequently used anti-cancer drugs are taxanes, which prevent proper inactivation of the spindle checkpoint and result in selective death of cancer, but not normal, cells. However, this class of drug can have debilitating side effects including permanent neurological damage and hair loss -- side effects that could be reduced if cancer cells could be targeted more selectively.

Professor Millar was quick to point out that this is not an overnight cure: "This research is a significant advance in our understanding of how the spindle checkpoint operates but it is really just the start. More research has to be done before we can convert this into a commercial treatment for patients. But we are greatly encouraged that our research here at Warwick is leading the way in the search for more effective cancer drugs."


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lindsey A. Shepperd, John C. Meadows, Alicja M. Sochaj, Theresa C. Lancaster, Juan Zou, Graham J. Buttrick, Juri Rappsilber, Kevin G. Hardwick, Jonathan B.A. Millar. Phosphodependent Recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 Kinase Maintains the Spindle Checkpoint. Current Biology, 2012; DOI: 10.1016/j.cub.2012.03.051

Cite This Page:

University of Warwick. "How 'checkpoint' proteins bind chromosomes." ScienceDaily. ScienceDaily, 20 April 2012. <www.sciencedaily.com/releases/2012/04/120420123855.htm>.
University of Warwick. (2012, April 20). How 'checkpoint' proteins bind chromosomes. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2012/04/120420123855.htm
University of Warwick. "How 'checkpoint' proteins bind chromosomes." ScienceDaily. www.sciencedaily.com/releases/2012/04/120420123855.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rodents Rampant in Gardens Around Louvre

Rodents Rampant in Gardens Around Louvre

AP (July 29, 2014) — Food scraps and other items left on the grounds by picnickers brings unwelcome visitors to the grounds of the world famous and popular Louvre Museum in Paris. (July 29) Video provided by AP
Powered by NewsLook.com
Jane Goodall Warns Great Apes Face Extinction

Jane Goodall Warns Great Apes Face Extinction

AFP (July 29, 2014) — The world's great apes face extinction within decades, renowned chimpanzee expert Jane Goodall warned Tuesday in a call to arms to ensure man's closest relatives are not wiped out. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) — Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Rat Infestation at Paris' Tuileries Garden

Rat Infestation at Paris' Tuileries Garden

AFP (July 29, 2014) — An infestation of rats is causing concern among tourists at Paris' most famous park -- the Tuileries garden next to the Louvre Museum. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins