Featured Research

from universities, journals, and other organizations

Nanotube 'sponge' has potential in oil spill cleanup

Date:
May 10, 2012
Source:
DOE/Oak Ridge National Laboratory
Summary:
A carbon nanotube sponge that can soak up oil in water with unparalleled efficiency has just been developed, with help from computational simulations.

A carbon nanotube sponge developed with help from ORNL researchers holds potential as an aid for oil spill cleanup.
Credit: Image courtesy of DOE/Oak Ridge National Laboratory

A carbon nanotube sponge that can soak up oil in water with unparalleled efficiency has been developed with help from computational simulations performed at the Department of Energy's (DOE's) Oak Ridge National Laboratory.

Carbon nanotubes, which consist of atom-thick sheets of carbon rolled into cylinders, have captured scientific attention in recent decades because of their high strength, potential high conductivity and light weight. But producing nanotubes in bulk for specialized applications was often limited by difficulties in controlling the growth process as well as dispersing and sorting the produced nanotubes.

ORNL's Bobby Sumpter was part of a multi-institutional research team that set out to grow large clumps of nanotubes by selectively substituting boron atoms into the otherwise pure carbon lattice. Sumpter and Vincent Meunier, now of Rensselaer Polytechnic Institute, conducted simulations on supercomputers, including Jaguar at ORNL's Leadership Computing Facility, to understand how the addition of boron would affect the carbon nanotube structure.

"Any time you put a different atom inside the hexagonal carbon lattice, which is a chicken wire-like network, you disrupt that network because those atoms don't necessarily want to be part of the chicken wire structure," Sumpter said. "Boron has a different number of valence electrons, which results in curvature changes that trigger a different type of growth."

Simulations and lab experiments showed that the addition of boron atoms encouraged the formation of so-called "elbow" junctions that help the nanotubes grow into a 3-D network. The team's results are published in Nature Scientific Reports.

"Instead of a forest of straight tubes, you create an interconnected, woven sponge-like material," Sumpter said. "Because it is interconnected, it becomes three-dimensionally strong, instead of only one-dimensionally strong along the tube axis."

Further experiments showed the team's material, which is visible to the human eye, is extremely efficient at absorbing oil in contaminated seawater because it attracts oil and repels water.

"It loves carbon because it is primarily carbon," Sumpter said. "Depending on the density of oil to water content and the density of the sponge network, it will absorb up to 100 times its weight in oil."

The material's mechanical flexibility, magnetic properties, and strength lend it additional appeal as a potential technology to aid in oil spill cleanup, Sumpter says.

"You can reuse the material over and over again because it's so robust," he said. "Burning it does not substantially decrease its ability to absorb oil, and squeezing it like a sponge doesn't damage it either."

The material's magnetic properties, caused by the team's use of an iron catalyst during the nanotube growth process, means it can be easily controlled or removed with a magnet in an oil cleanup scenario. This ability is an improvement over existing substances used in oil removal, which are often left behind after cleanup and can degrade the environment.

The experimental team has submitted a patent application on the technology through Rice University.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel P. Hashim, Narayanan T. Narayanan, Jose M. Romo-Herrera, David A. Cullen, Myung Gwan Hahm, Peter Lezzi, Joseph R. Suttle, Doug Kelkhoff, E. Muñoz-Sandoval, Sabyasachi Ganguli, Ajit K. Roy, David J. Smith, Robert Vajtai, Bobby G. Sumpter, Vincent Meunier, Humberto Terrones, Mauricio Terrones, Pulickel M. Ajayan. Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Scientific Reports, 2012; 2 DOI: 10.1038/srep00363

Cite This Page:

DOE/Oak Ridge National Laboratory. "Nanotube 'sponge' has potential in oil spill cleanup." ScienceDaily. ScienceDaily, 10 May 2012. <www.sciencedaily.com/releases/2012/05/120510142005.htm>.
DOE/Oak Ridge National Laboratory. (2012, May 10). Nanotube 'sponge' has potential in oil spill cleanup. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/05/120510142005.htm
DOE/Oak Ridge National Laboratory. "Nanotube 'sponge' has potential in oil spill cleanup." ScienceDaily. www.sciencedaily.com/releases/2012/05/120510142005.htm (accessed July 25, 2014).

Share This




More Earth & Climate News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) — The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) — Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Higgins Breaks Record at Mt. Washington

Higgins Breaks Record at Mt. Washington

Driving Sports (July 24, 2014) — Subaru Rally Team USA drivers David Higgins and Travis Pastrana face off against a global contingent of racers at the annual Mt. Washington Hillclimb in New Hampshire. Includes exclusive in-car footage from Higgins' record attempt. Video provided by Driving Sports
Powered by NewsLook.com
Storm Kills Three, Injures 20 at Virginia Campground

Storm Kills Three, Injures 20 at Virginia Campground

Reuters - US Online Video (July 24, 2014) — A likely tornado tears through an eastern Virginia campground, killing three and injuring at least 20. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Sponging Up Oil Spills: Nanosponges Soak Up Oil Again and Again

Apr. 16, 2012 — Researchers have discovered that adding a dash of boron to carbon while creating nanotubes turns them into solid, spongy, reusable blocks that have an astounding ability to absorb oil spilled in ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins