Featured Research

from universities, journals, and other organizations

Non-invasive intracellullar 'thermometer' with fluorescent proteins developed

Date:
May 23, 2012
Source:
Plataforma SINC
Summary:
Biologists have developed a technique to measure internal cell temperatures without altering their metabolism. This finding could be useful when distinguishing healthy cells from cancerous ones, as well as learning more about cellular processes.

The green fluorescent proteins help measure intracellular heat.
Credit: Richard Wheeler

A team from the Institute of Photonic Sciences (ICFO) has developed a technique to measure internal cell temperatures without altering their metabolism. This finding could be useful when distinguishing healthy cells from cancerous ones, as well as learning more about cellular processes.

Related Articles


Temperature controls many of the cell's life processes, such as splitting and metabolism. A European research team led by the Institute of Photonic Sciences (ICFO), which has the Severo Ochoa mark of excellence, has published a non-invasive method that offers quicker, more precise data from measuring intracellular heat from green fluorescent proteins (GFP) in the journal Nano Letters.

"A unique characteristic of our method is that it does not alter any cellular process," Romain Quidant, ICFO researcher and study coordinator, explained. Unlike other techniques, this method does not stress or alter the behaviour of the cell as it does not need to be inserted into any molecules or any other synthetic nano-object that is sensitive to the internal temperature.

One of the most promising outcomes is a better understanding of cellular processes, such as those involved in metastasis. Furthermore, the possibility of obtaining information about intracellular temperature could be used to "differentiate normal cells from cancerous ones in a quick, non-invasive manner," Sebastian Thompson Parga, ICFO researcher and co-author of the project.

Information deduced from temperature

From intracellular temperature, we can deduce how the energy used by the body in the uncontrolled spreading of cancer cells flows.

In this interdisciplinary study, biology uses physical measurements of energy transmission to study processes such as gene expression, metabolism and cell splitting.

The technique used is known by the name of 'fluorescence polarisation anisotropy' (FPA) as it allows the difference in polarization between light that fluorescent molecules receive, and that which they emit later, to be measured. In the words of Quidant, "this difference in polarization (anisotropy) is directly connected to the rotating of the GFP molecules and therefore with temperature."

The green fluorescence of the proteins has a reward

The authors of the study ensure that biologists will be able to implement this technique in experimental set-ups and obtain the cell temperature as another observable detail. In 2008, when Osamu Shimomura, Martin Chalfie and Roger Y. Tsien won the Nobel Chemistry Prize for discovering and developing GFP, they resolved many complications in biomedical research.

In the field of molecular biology, different techniques have been suggested to monitor internal cell temperature, these researchers found limitations in measuring the intensity and spectrum of its fluorescence.

Furthermore, the option of measuring intracellular activity could establish the basis to develop a field that has not been widely studied: thermal biology at cellular level.

According to the authors of the study, the following step is to improve the method's sensitivity and resolution. In order to achieve that, the researchers work to fine tune the properties of the fluorescent proteins and optimise the detection method of its 'thermometer'.


Story Source:

The above story is based on materials provided by Plataforma SINC. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jon S. Donner, Sebastian A. Thompson, Mark P. Kreuzer, Guillaume Baffou, Romain Quidant. Mapping Intracellular Temperature Using Green Fluorescent Protein. Nano Letters, 2012; 12 (4): 2107 DOI: 10.1021/nl300389y

Cite This Page:

Plataforma SINC. "Non-invasive intracellullar 'thermometer' with fluorescent proteins developed." ScienceDaily. ScienceDaily, 23 May 2012. <www.sciencedaily.com/releases/2012/05/120523102054.htm>.
Plataforma SINC. (2012, May 23). Non-invasive intracellullar 'thermometer' with fluorescent proteins developed. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2012/05/120523102054.htm
Plataforma SINC. "Non-invasive intracellullar 'thermometer' with fluorescent proteins developed." ScienceDaily. www.sciencedaily.com/releases/2012/05/120523102054.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Discovery Of 'Dragon' Dinosaur In China Could Explain Myths

Discovery Of 'Dragon' Dinosaur In China Could Explain Myths

Newsy (Jan. 30, 2015) A long-necked dinosaur from the Jurassic Period was discovered in China. Researchers think it could answer mythology questions. Video provided by Newsy
Powered by NewsLook.com
Poll Says Firstborn Is Responsible, Youngest Is Funnier

Poll Says Firstborn Is Responsible, Youngest Is Funnier

Newsy (Jan. 30, 2015) According to a poll out of the U.K., eldest siblings feel more responsible and successful than their younger siblings. Video provided by Newsy
Powered by NewsLook.com
Brawling Pandas Are Violently Adorable

Brawling Pandas Are Violently Adorable

Buzz60 (Jan. 29, 2015) Video of pandas play fighting at the Chengdu Research Base in China will make your day. Mara Montalbano (@maramontalbano) shows us. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins