Featured Research

from universities, journals, and other organizations

Scientists discover nerves control iridescence in squid's remarkable 'electric skin'

Date:
August 27, 2012
Source:
Marine Biological Laboratory
Summary:
Nerves in squid skin control the animal's spectrum of shimmering hues -- from red to blue -- as well as their speed of change, biologists have found. The work marks the first time neural control of iridescence in an invertebrate species has been demonstrated.

Neurally activated iridescence in squid iridophores. Doryteuthis pealeii have conspicuous pigmentary chromatophores and underlying structurally colored iridophores.
Credit: Wardill, Gonzalez-Bellido, Crook & Hanlon, Proceedings of the Royal Society B: Biological Sciences

Squid's colorful, changeable skin enables the animal -- and their close relatives, cuttlefish and octopus -- to display extraordinary camouflage, the speed and diversity of which is unmatched in the animal kingdom.

Related Articles


But how squid control their skin's iridescence, or light-reflecting property, which is responsible for the animal's sparkly rainbow of color, has been unknown.

In a new study, MBL (Marine Biological Laboratory) researchers Paloma Gonzalez Bellido and Trevor Wardill and their colleagues report that nerves in squid skin control the animal's spectrum of shimmering hues -- from red to blue -- as well as their speed of change. The work marks the first time neural control of iridescence in an invertebrate species has been demonstrated.

Squid skin is extraordinary because it has two ways to produce color and pattern. Pigmented organs called chromatophores create patterns with yellow, red, and brown colors. Underneath the pigments, iridophores, aggregations of iridescent cells in the skin, reflect light and add blue, green, and pink colors to the overall appearance of the skin. Collectively these two groups of skin elements can create spectacular optical illusions with patterns of color, brightness, and contrast change.

"For 20 years we have been wondering how the dynamically changeable iridescence is controlled by the squid," says study co-author Roger Hanlon. "At long last we have clean evidence that there are dedicated nerve fibers that turn on and tune the color and brightness of iridophores. It is not an exaggeration to call this "electric skin." The complex nerve network distributed throughout the squid's skin instantly coordinates tens of thousands of chromatophores with iridescent reflectors for rapidly changing behaviors ranging from camouflage to signaling."

Working with longfin inshore squid (Doryteuthis pealeii), the researchers took a new approach to investigating the mystery behind the iridophore control mechanism. By tracing a highly branched network of nerves and stimulating them electrically, they found that they could activate progressive color shifts from red and orange to yellow, green, and blue in just 15 seconds. The findings suggest that the specific color of each iridophore, as well as speed of change, is controlled by the nervous system, as is spatial chromatophore patterning that occurs in the skin layer just above.

How squid choose and hold particular skin colors to help camouflage themselves remains unknown and is particularly interesting because the animals are completely colorblind.

"One possibility is the animals do not care about the color of the iridophores, but shifting the color from red to blue will dramatically increase the relative brightness of iridophores," says Wardill. "This is because squid see predominantly blue light. Blue light is especially important in the ocean as it penetrates best into deeper water."

The work was funded by grants from the Office of Naval Research (ONR), Defense Advanced Research Projects Agency (DARPA), and Air Force Office of Scientific Research.


Story Source:

The above story is based on materials provided by Marine Biological Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. J. Wardill, P. T. Gonzalez-Bellido, R. J. Crook, R. T. Hanlon. Neural control of tuneable skin iridescence in squid. Proceedings of the Royal Society B: Biological Sciences, 2012; DOI: 10.1098/rspb.2012.1374

Cite This Page:

Marine Biological Laboratory. "Scientists discover nerves control iridescence in squid's remarkable 'electric skin'." ScienceDaily. ScienceDaily, 27 August 2012. <www.sciencedaily.com/releases/2012/08/120827113355.htm>.
Marine Biological Laboratory. (2012, August 27). Scientists discover nerves control iridescence in squid's remarkable 'electric skin'. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2012/08/120827113355.htm
Marine Biological Laboratory. "Scientists discover nerves control iridescence in squid's remarkable 'electric skin'." ScienceDaily. www.sciencedaily.com/releases/2012/08/120827113355.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Keurig Co-Founder Says Company Has A Waste Problem

Keurig Co-Founder Says Company Has A Waste Problem

Newsy (Mar. 5, 2015) — Keurig co-founder John Sylvan told The Atlantic he doesn&apos;t even own a Keurig because they&apos;re too expensive and produce too much waste. Video provided by Newsy
Powered by NewsLook.com
Raw: Tourists Visit Rare Grey Whales in Mexico

Raw: Tourists Visit Rare Grey Whales in Mexico

AP (Mar. 4, 2015) — Once nearly extinct, grey whales now migrate in their thousands to Mexico&apos;s Vizcaino reserve in Baja California, in search of warmer waters to mate and give birth. Tourists flock to the reserve to see the whales, measuring up to 49 feet long. (March 4) Video provided by AP
Powered by NewsLook.com
Raw: Injured Miners Treated After Blast

Raw: Injured Miners Treated After Blast

AP (Mar. 4, 2015) — An explosion ripped through a coal mine before dawn Wednesday in war-torn eastern Ukraine, killing at least one miner, officials said. Graphic video of injured miners being treated in a Donetsk hospital. (March 4) Video provided by AP
Powered by NewsLook.com
Australian Museum Shares Terrifying Goblin Shark With the World

Australian Museum Shares Terrifying Goblin Shark With the World

Buzz60 (Mar. 4, 2015) — The Australian Museum has taken in its fourth-ever goblin shark, a rare fish with an electricity-sensing snout and &apos;alien-like&apos; jaw. Mike Janela (@mikejanela) takes a look. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins