Featured Research

from universities, journals, and other organizations

Rethinking toxic proteins on the cellular level: Lipid droplets play an unexpected role in embryo development

Date:
October 18, 2012
Source:
University of Rochester
Summary:
Histones are proteins needed to assemble DNA molecules into chromosomes. They have long represented a classic balancing act in biology; too few histone molecules result in DNA damage, while too many histones are toxic to the cell. New research is causing a fundamental shift in the concept of histone balance and the mechanism behind it.

Histones are proteins needed to assemble DNA molecules into chromosomes. They have long represented a classic balancing act in biology; too few histone molecules result in DNA damage, while too many histones are toxic to the cell. New research at the University of Rochester is causing a fundamental shift in the concept of histone balance and the mechanism behind it.

Previous studies of Drosophila embryos showed massive amounts of histones located on lipid droplets, the structures associated with fat storage. While it had been speculated that the lipid droplets provide a place for safe, temporary storage of the histones, scientists had no clear proof for this storage idea nor did they understand how the histones attached to the surface of the droplets.

"What we discovered is that the lipid droplets serve as a holding space, making the histones available for the formation of chromosomes at the precise time they're needed," said Associate Professor of Biology Michael Welte. "We also found that when there are no lipid droplet-bound histones in the embryo, there are problems with the structure of chromosomes that can lead to death."

Welte and his research team were able to come to these conclusions by identifying the protein called "Jabba" as the specific molecule that anchors histones onto the surface of the lipid droplets.

The other scientists on the research team were Zhihuan Li in Rochester, and Katharina Thiel, Peter Thul, Mathias Beller and Ronald Kühnlein in Germany. Their work will be published next month in the journal Current Biology.

Histones not bound to DNA have long been considered toxic, prompting them to be destroyed by the cells. Welte's work demonstrates that binding to lipid droplets protects the histones, while storing them for later use in chromosome assembly.

Since there is evidence that histones and other proteins are associated with lipid droplets in a variety of organisms, including humans, Welte believes there may be medical relevance in the future.

"We've shown that lipid droplets have a function beyond fat metabolism, and it raises the possibility that, in some cases, fat storage may be beneficial," said Welte. "Additional lipid droplets may allow more toxic proteins to be sequestered, thus protecting the organism."

The next step for Welte and his lab is to determine how Jabba attaches the histones to the lipid droplets and how the binding is regulated. Welte also wants to know if proteins other than histones are being sequestered on the droplets for future use by the Drosophila embryo.


Story Source:

The above story is based on materials provided by University of Rochester. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zhihuan Li, Katharina Thiel, Peter J. Thul, Mathias Beller, Ronald P. Kühnlein, Michael A. Welte. Lipid Droplets Control the Maternal Histone Supply of Drosophila Embryos. Current Biology, 2012; DOI: 10.1016/j.cub.2012.09.018

Cite This Page:

University of Rochester. "Rethinking toxic proteins on the cellular level: Lipid droplets play an unexpected role in embryo development." ScienceDaily. ScienceDaily, 18 October 2012. <www.sciencedaily.com/releases/2012/10/121018123046.htm>.
University of Rochester. (2012, October 18). Rethinking toxic proteins on the cellular level: Lipid droplets play an unexpected role in embryo development. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2012/10/121018123046.htm
University of Rochester. "Rethinking toxic proteins on the cellular level: Lipid droplets play an unexpected role in embryo development." ScienceDaily. www.sciencedaily.com/releases/2012/10/121018123046.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) — Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) — The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) — A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins