Featured Research

from universities, journals, and other organizations

Rethinking toxic proteins on the cellular level: Lipid droplets play an unexpected role in embryo development

Date:
October 18, 2012
Source:
University of Rochester
Summary:
Histones are proteins needed to assemble DNA molecules into chromosomes. They have long represented a classic balancing act in biology; too few histone molecules result in DNA damage, while too many histones are toxic to the cell. New research is causing a fundamental shift in the concept of histone balance and the mechanism behind it.

Histones are proteins needed to assemble DNA molecules into chromosomes. They have long represented a classic balancing act in biology; too few histone molecules result in DNA damage, while too many histones are toxic to the cell. New research at the University of Rochester is causing a fundamental shift in the concept of histone balance and the mechanism behind it.

Related Articles


Previous studies of Drosophila embryos showed massive amounts of histones located on lipid droplets, the structures associated with fat storage. While it had been speculated that the lipid droplets provide a place for safe, temporary storage of the histones, scientists had no clear proof for this storage idea nor did they understand how the histones attached to the surface of the droplets.

"What we discovered is that the lipid droplets serve as a holding space, making the histones available for the formation of chromosomes at the precise time they're needed," said Associate Professor of Biology Michael Welte. "We also found that when there are no lipid droplet-bound histones in the embryo, there are problems with the structure of chromosomes that can lead to death."

Welte and his research team were able to come to these conclusions by identifying the protein called "Jabba" as the specific molecule that anchors histones onto the surface of the lipid droplets.

The other scientists on the research team were Zhihuan Li in Rochester, and Katharina Thiel, Peter Thul, Mathias Beller and Ronald Kühnlein in Germany. Their work will be published next month in the journal Current Biology.

Histones not bound to DNA have long been considered toxic, prompting them to be destroyed by the cells. Welte's work demonstrates that binding to lipid droplets protects the histones, while storing them for later use in chromosome assembly.

Since there is evidence that histones and other proteins are associated with lipid droplets in a variety of organisms, including humans, Welte believes there may be medical relevance in the future.

"We've shown that lipid droplets have a function beyond fat metabolism, and it raises the possibility that, in some cases, fat storage may be beneficial," said Welte. "Additional lipid droplets may allow more toxic proteins to be sequestered, thus protecting the organism."

The next step for Welte and his lab is to determine how Jabba attaches the histones to the lipid droplets and how the binding is regulated. Welte also wants to know if proteins other than histones are being sequestered on the droplets for future use by the Drosophila embryo.


Story Source:

The above story is based on materials provided by University of Rochester. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zhihuan Li, Katharina Thiel, Peter J. Thul, Mathias Beller, Ronald P. Kühnlein, Michael A. Welte. Lipid Droplets Control the Maternal Histone Supply of Drosophila Embryos. Current Biology, 2012; DOI: 10.1016/j.cub.2012.09.018

Cite This Page:

University of Rochester. "Rethinking toxic proteins on the cellular level: Lipid droplets play an unexpected role in embryo development." ScienceDaily. ScienceDaily, 18 October 2012. <www.sciencedaily.com/releases/2012/10/121018123046.htm>.
University of Rochester. (2012, October 18). Rethinking toxic proteins on the cellular level: Lipid droplets play an unexpected role in embryo development. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2012/10/121018123046.htm
University of Rochester. "Rethinking toxic proteins on the cellular level: Lipid droplets play an unexpected role in embryo development." ScienceDaily. www.sciencedaily.com/releases/2012/10/121018123046.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) — It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) — More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) — The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins