Featured Research

from universities, journals, and other organizations

Biochemists discover new mechanism in ribosome formation: Protein controls synchronized transport of ribosome factors

Date:
November 2, 2012
Source:
Heidelberg, Universität
Summary:
A new mechanism in the formation of ribosomes has been discovered. Scientists now describe a heretofore uncharacterized protein that plays a specific role in ribosome assembly in eukaryotes, organisms whose cells contain a cell nucleus. This protein makes sure that specific factors required for ribosome synthesis are transported together, like hitchhikers, into the nucleus to the site of assembly.

The figure shows the large subunit of the ribosome in its high-resolution 3D structure. The ribosomal RNA is depicted in grey, the myriad of ribosomal proteins in blue-grey. The r-protein Rpl5 is shown in yellow, the r-protein Rpl11 in green. The ruby-coloured area reveals the ribosomal RNA which binds Rpl5 and Rpl11.
Credit: Ed Hurt

A new mechanism in the formation of ribosomes has been discovered by researchers from the Heidelberg University Biochemistry Center. In an interdisciplinary approach, the Heidelberg scientists, along with colleagues from Switzerland and Japan, describe a heretofore uncharacterised protein that plays a specific role in ribosome assembly in eukaryotes, organisms whose cells contain a cell nucleus. This protein makes sure that specific factors required for ribosome synthesis are transported together, like hitchhikers, into the nucleus to the site of assembly.

Related Articles


The results of this research were published in Science.

Ribosomes, the protein factories of the cell, are macromolecular complexes of ribonucleic acids (RNA) and ribosomal proteins (r-proteins) that are organised in a highly complicated three-dimensional nanostructure. Correct synthesis of ribosomes is critical for the division of all cells and is a process that follows strict rules. In eukaryotes, new ribosomes are formed predominantly in the cell nucleus. Therefore, the r-proteins needed for ribosome formation must travel from the cytoplasm of the cell to a site in the nucleus where the ribosomes are assembled. Until recently it was not clear whether r-proteins that have a similar function and form functional clusters on the ribosome structure are also co-transported into the nucleus.

The researchers have now found a protein that coordinates the co-transport of certain r-proteins in functional clusters into the cell nucleus. This factor is called Symportin1, for synchronised import. "Symportin1 synchronises the import of both the Rpl5 and Rpl11 r-proteins into the cell nucleus and supports their integration into the growing ribosome structure," explains Prof. Dr. Irmgard Sinning of the Heidelberg University Biochemistry Center (BZH). "It employs a familiar logistical concept from every day life, like picking up a hitchhiker or sharing a taxi with someone headed for the same destination," says Dr. Gert Bange of the BZH, lead author of the study together with Dr. Dieter Kressler (now of Fribourg University).

The researchers from Heidelberg University and the University of Fribourg (Switzerland) collaborated closely with colleagues from Osaka University in Japan on the research. "The combination of different methods ranging from traditional cell biology to new biophysical approaches was crucial in developing the detailed picture of this previously unknown biological mechanism," emphasises Prof. Dr. Ed Hurt, also of the BZH. The study took advantage of the Biochemistry Center's crystallisation platform and the research received support from the Cluster of Excellence "CellNetworks" of Heidelberg University.


Story Source:

The above story is based on materials provided by Heidelberg, Universität. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Kressler, G. Bange, Y. Ogawa, G. Stjepanovic, B. Bradatsch, D. Pratte, S. Amlacher, D. Strauss, Y. Yoneda, J. Katahira, I. Sinning, E. Hurt. Synchronizing Nuclear Import of Ribosomal Proteins with Ribosome Assembly. Science, 2012; 338 (6107): 666 DOI: 10.1126/science.1226960

Cite This Page:

Heidelberg, Universität. "Biochemists discover new mechanism in ribosome formation: Protein controls synchronized transport of ribosome factors." ScienceDaily. ScienceDaily, 2 November 2012. <www.sciencedaily.com/releases/2012/11/121102084643.htm>.
Heidelberg, Universität. (2012, November 2). Biochemists discover new mechanism in ribosome formation: Protein controls synchronized transport of ribosome factors. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2012/11/121102084643.htm
Heidelberg, Universität. "Biochemists discover new mechanism in ribosome formation: Protein controls synchronized transport of ribosome factors." ScienceDaily. www.sciencedaily.com/releases/2012/11/121102084643.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Watch Baby Goose Survive A 400-Foot Cliff Dive

Watch Baby Goose Survive A 400-Foot Cliff Dive

Buzz60 (Oct. 31, 2014) — For its nature series Life Story, the BBC profiled the barnacle goose, whose chicks must make a daredevil 400-foot cliff dive from their nests to find food. Jen Markham has the astonishing video. Video provided by Buzz60
Powered by NewsLook.com
World's Salamanders At Risk From Flesh-Eating Fungus

World's Salamanders At Risk From Flesh-Eating Fungus

Newsy (Oct. 31, 2014) — The import of salamanders around the globe is thought to be contributing to the spread of a deadly fungus. Video provided by Newsy
Powered by NewsLook.com
Alcoholic Drinks In The E.U. Could Get Calorie Labels

Alcoholic Drinks In The E.U. Could Get Calorie Labels

Newsy (Oct. 31, 2014) — A health group in the United Kingdom has called for mandatory calorie labels on alcoholic beverages in the European Union. Video provided by Newsy
Powered by NewsLook.com
Malaria Threat in Liberia as Fight Against Ebola Rages

Malaria Threat in Liberia as Fight Against Ebola Rages

AFP (Oct. 31, 2014) — Focus on treating the Ebola epidemic in Liberia means that treatment for malaria, itself a killer, is hard to come by. MSF are now undertaking the mass distribution of antimalarials in Monrovia. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins