Featured Research

from universities, journals, and other organizations

How diversity helps microbial communities respond to change

Date:
November 26, 2012
Source:
Georgia Institute of Technology, Research Communications
Summary:
Researchers have received a grant to study how complex microbial systems use their genetic diversity to respond to human-induced change.

Researchers at the Georgia Institute of Technology have received a five-year, $1.8 million grant from the National Science Foundation (NSF) to study how complex microbial systems use their genetic diversity to respond to human-induced change. The work is important because these microbial communities play critical roles in the environment, breaking down pollutants, recycling nutrients -- and serving as major sources of nitrogen and carbon.

Related Articles


Despite the importance of the microbes, relatively few among the thousands of species that make up a typical microbial community have been studied extensively. The relatively unknown organisms within these communities may have genes that could help address critical environmental, energy and other challenges.

"We are all dependent on these microbes," said Kostas Konstantinidis, an assistant professor in Georgia Tech's School of Civil and Environmental Engineering and the grant's principal investigator. "There are many different species and a huge amount of diversity out there. This project will allow us to look at the details of how this diversity is generated, how redundant it is and how these microbes are changing in response to perturbations in the environment."

The funding, from the NSF's "Dimensions of Biodiversity" program, will support a collaborative effort involving Konstantinidis and two other Georgia Tech researchers: Eberhardt Voit and Jim Spain. Voit holds the David D. Flanagan Chair in Biological Systems within the Department of Biomedical Engineering at Georgia Tech and Emory University, and is a Georgia Research Alliance Eminent Scholar. Spain is a professor in the School of Civil and Environmental Engineering.

The research will initially focus on Lake Lanier, a large human-made lake located near Atlanta. Beyond the experimental work, the research will involve extensive mathematical modeling of the complex microbial communities.

"We want to see how the microbial communities of the lake change over time, and how the perturbations affect that," said Konstantinidis, who holds the Carlton S. Wilder Chair in Environmental Engineering at Georgia Tech. "We then want to extend our understanding to other ecosystems, such as the Gulf of Mexico."

The researchers will set up mesocosms -- bioreactors -- in the laboratory with microbial populations from Lake Lanier. They will feed these populations pollutants such as hydrocarbons, antibiotics and pesticides to see how they respond and how they deal with compounds to which they may not have been exposed.

"Sometimes they may not have the genes to break down the pollutants and may not encode the right enzymes," Konstantinidis said. "But if you give them enough time, these microbes somehow innovate. We want to understand the genetic mechanisms that allow the microbes to break down a compound that they are seeing for the first time."

The grant will allow the Georgia Tech researchers to expand knowledge of "rare" microbes, largely unknown organisms that may harbor useful genes.

"We think these unusual microbes may be the key ones," Konstantinidis said. "Though they may be low in abundance, the whole community may depend on them. When you have a new pollutant, these rare microbes may become more important by providing the genetic diversity needed."

Extending this understanding will be challenging, however, because few species can be cultured in the laboratory. That difficulty is leading Konstantinidis and his team to develop new tools that allow studying the organisms in the field, without culturing them under laboratory settings. Addressing those challenges may lead to the creation of additional techniques that could benefit other areas of biology, engineering and medicine.

"One of the most common techniques is to take the microbial DNA and decode it," he explained. "From the DNA, we can tell what the organism is and what it may be doing in the environment."

But studying DNA brings another set of challenges. The genes are rarely recovered intact based on these genomic techniques, and frequently include only part of the genome or are contaminated by DNA from other species.

"Bioinformatics is a big issue for us, because that is how we can put the pieces together," Konstantinidis explained. "We have to make sense of pieces of DNA from perhaps thousands of organisms. This is where biology, computing and engineering are merging to find clever ways to accomplish such tasks."

Part of investigating how the microbial community responds to change will include assessing the effects of rising temperatures. Will global climate change cause increased respiration among the microbes and therefore boost carbon dioxide output, or will temperature change lead the organisms to store carbon, pulling CO2 out of the atmosphere?

"A big part of the scientific community is working on questions like this to get a better understanding and better model of how microbial systems will respond," Konstantinidis said.

Modeling will be important to understand not only how microbial communities will respond to broad climate changes, but also how they might react to such dramatic perturbations as large oil spills.

"From small experiments in the lab, the goal is to eventually model whole ecosystems -- how Lake Lanier works or how the Gulf of Mexico works in terms of the microbes that are there," he said. "We want to have a more predictive model of how these communities that are so diverse will respond to a perturbation like an oil spill or rising tempeartures. With so many thousands of organisms from different species, we need modeling to put it all together."


Story Source:

The above story is based on materials provided by Georgia Institute of Technology, Research Communications. The original article was written by John Toon. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology, Research Communications. "How diversity helps microbial communities respond to change." ScienceDaily. ScienceDaily, 26 November 2012. <www.sciencedaily.com/releases/2012/11/121126142852.htm>.
Georgia Institute of Technology, Research Communications. (2012, November 26). How diversity helps microbial communities respond to change. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2012/11/121126142852.htm
Georgia Institute of Technology, Research Communications. "How diversity helps microbial communities respond to change." ScienceDaily. www.sciencedaily.com/releases/2012/11/121126142852.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Cambodian Capital's Only Working Elephant to Retire in Jungle

Cambodian Capital's Only Working Elephant to Retire in Jungle

AFP (Nov. 25, 2014) Phnom Penh's only working elephant was blessed by a crowd of chanting Buddhist monks Tuesday as she prepared for a life of comfortable jungle retirement after three decades of giving rides to tourists. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Buzz60 (Nov. 24, 2014) A Swedish Adventure racing team travels to try and win a world title, but comes home with something way better: a stray dog that joined the team for much of the grueling 430-mile race. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins