Featured Research

from universities, journals, and other organizations

Nanobiotechnology: Versatile 3-D nanostructures using DNA 'bricks'

Date:
November 29, 2012
Source:
Wyss Institute for Biologically Inspired Engineering at Harvard
Summary:
Researchers have created more than 100 three-dimensional nanostructures using DNA building blocks that function like Lego bricks -- a major advance from the two-dimensional structures the same team built a few months ago.

Computer-generated 3D models (left) and corresponding 2D projection microscopy images (right) of nanostructures self-assembled from synthetic DNA strands called DNA bricks. A master DNA brick collection defines a 25-nanometer cubic "molecular canvas" with 1000 voxels. By selecting subsets of bricks from this canvas, Ke et al. constructed a panel of 102 distinct shapes exhibiting sophisticated surface features as well as intricate interior cavities and tunnels. These nanostructures may enable diverse applications ranging from medicine to nanobiotechnology and electronics.
Credit: Yonggang Ke, Wyss Institute, Harvard University

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have created more than 100 three-dimensional (3D) nanostructures using DNA building blocks that function like Lego® bricks -- a major advance from the two-dimensional (2D) structures the same team built a few months ago.

Related Articles


In effect, the advance means researchers just went from being able to build a flat wall of Legos®, to building a house. The new method, featured as a cover research article in the 30 November issue of Science, is the next step toward using DNA nanotechnologies for more sophisticated applications than ever possible before, such as "smart" medical devices that target drugs selectively to disease sites, programmable imaging probes, templates for precisely arranging inorganic materials in the manufacturing of next generation computer circuits, and more.

The nanofabrication technique, called "DNA-brick self-assembly," uses short, synthetic strands of DNA that work like interlocking Lego® bricks. It capitalizes on the ability to program DNA to form into predesigned shapes thanks to the underlying "recipe" of DNA base pairs: A (adenosine) only binds to T (thymine) and C (cytosine) only binds to G (guanine).

Earlier this year, the Wyss team reported in Nature how they could create a collection of 2D shapes by stacking one DNA brick (42 bases in length) upon another.

But there's a "twist" in the new method required to build in 3D.

The trick is to start with an even smaller DNA brick (32 bases in length), which changes the orientation of every matched-up pair of bricks to a 90 degree angle -- giving every two Legos® a 3D shape. In this way, the team can use these bricks to build "out" in addition to "up," and eventually form 3D structures, such as a 25-nanometer solid cube containing hundreds of bricks. The cube becomes a "master" DNA "molecular canvas"; in this case, the canvas was composed of 1000 so-called "voxels," which correspond to eight base-pairs and measure about 2.5 nanometers in size -- meaning this is architecture at its tiniest.

The master canvas is where the modularity comes in: by simply selecting subsets of specific DNA bricks from the large cubic structure, the team built 102 3D structures with sophisticated surface features, as well as intricate interior cavities and tunnels. "This is a simple, versatile and robust method," says Peng Yin, Ph.D., Wyss core faculty member and senior author on the study.

Another method used to build 3D structures, called DNA origami, is tougher to use to build complex shapes, Yin said, because it relies on a long "scaffold" strand of DNA that folds to interact with hundreds of shorter "staple" strands -- and each new shape requires a new scaffold routing strategy and hence new staples. In contrast, the DNA brick method does not use any scaffold strand and therefore has a modular architecture; each brick can be added or removed independently.

"We are moving at lightning speed in our ability to devise ever more powerful ways to use biocompatible DNA molecules as structural building blocks for nanotechnology, which could have great value for medicine as well as non-medical applications," says Wyss Institute Founding Director Don Ingber, M.D., Ph.D.

The research team led by Yin, who is also an assistant professor of systems biology at Harvard Medical School (HMS), included Wyss Postdoctoral Fellow Yonggang Ke, Ph.D., and Wyss Graduate Student Luvena Ong. Another contributor was Wyss Core Faculty member William Shih, Ph.D., who also holds appointments at HMS and the Dana-Farber Cancer Institute.

The research was supported by the Office of Naval Research, the Army Research Office, the National Science Foundation, the National Institutes of Health, and the Wyss Institute for Biologically Inspired Engineering at Harvard University.


Story Source:

The above story is based on materials provided by Wyss Institute for Biologically Inspired Engineering at Harvard. Note: Materials may be edited for content and length.


Journal Reference:

  1. Y. Ke, L. L. Ong, W. M. Shih, P. Yin. Three-Dimensional Structures Self-Assembled from DNA Bricks. Science, 2012; 338 (6111): 1177 DOI: 10.1126/science.1227268

Cite This Page:

Wyss Institute for Biologically Inspired Engineering at Harvard. "Nanobiotechnology: Versatile 3-D nanostructures using DNA 'bricks'." ScienceDaily. ScienceDaily, 29 November 2012. <www.sciencedaily.com/releases/2012/11/121129143259.htm>.
Wyss Institute for Biologically Inspired Engineering at Harvard. (2012, November 29). Nanobiotechnology: Versatile 3-D nanostructures using DNA 'bricks'. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2012/11/121129143259.htm
Wyss Institute for Biologically Inspired Engineering at Harvard. "Nanobiotechnology: Versatile 3-D nanostructures using DNA 'bricks'." ScienceDaily. www.sciencedaily.com/releases/2012/11/121129143259.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) — The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) — Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) — Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins