Featured Research

from universities, journals, and other organizations

Why our backs can't read braille: Scientists map sensory nerves in mouse skin

Date:
December 19, 2012
Source:
Johns Hopkins Medicine
Summary:
Scientists have created stunning images of the branching patterns of individual sensory nerve cells. Their report details the arrangement of these branches in skin from the backs of mice.

The twisted pathway of a single nerve cell in the skin on the back of a mouse. This particular cell has wrapped itself around at least 140 hair follicles.
Credit: eLife Journal, Creative Commons license, courtesy of Hao Wu

Johns Hopkins scientists have created stunning images of the branching patterns of individual sensory nerve cells. Their report, published online in the journal eLife on Dec. 18, details the arrangement of these branches in skin from the backs of mice. The branching patterns define ten distinct groups that, the researchers say, likely correspond to differences in what the nerves do and could hold clues for pain management and other areas of neurological study.

Each type of nerve cell that the team studied was connected at one end to the spinal cord through a thin, wire-like projection called an axon. On the other side of the cell's "body" was another axon that led to the skin. The axons branched in specific patterns, depending on the cell type, to reach their targets within the skin. "The complexity and precision of these branching patterns is breath-taking," says Jeremy Nathans, M.D., Ph.D., a Howard Hughes researcher and professor of molecular biology and genetics at the Institute for Basic Biomedical Sciences at the Johns Hopkins School of Medicine.

Skin is the body's largest sensory organ, and the nerves that pervade it are responsible for sending signals to the brain -- signals¬ perceived as sensations of pain, temperature, pressure and itch, to name a few. Stimuli that prompt signals, like a change in temperature, can come directly from the skin, or they can come from hair follicles embedded in the skin. Each hair follicle consists of a tiny cylinder of cells within the skin that surrounds the root of an individual hair.

Nathans says that many axons catalogued in their study wrapped themselves around hair follicles. Different types of axons contact the follicles in different ways and at different depths within the skin, presumably to collect particular kinds of information.

One of the challenges in visualizing axons arises because their overlapping, maze-like pathways make it very difficult to tell one from another. To overcome this hurdle, Nathans' team, led by Hao Wu, Ph.D., a post-doctoral fellow in his lab, used a genetic trick to randomly color just a few dozen nerve cells out of the thousands in the skin of developing mice. Then Wu and colleague John Williams used software to trace the pattern of each nerve cell.

The axons of one type of nerve cell, for example, surrounded only a single hair follicle, its ends looking like a bear trap because of the vertical peaks flanking each hair column. Another type, accounting for 50 per cent of those the researchers saw, had 75 branch points, on average, allowing it to cover much larger areas and contact about 50 hair follicles per axon.

The axons of other nerve cell types were simpler and shorter, branching less but still encircling, like the tendrils of a vine, multiple hair follicles. Still another type had endings that appeared more like brambles -- less organized and bushier and without any connections to hair follicles. These types, too, could be more or less branched and, therefore, covered a particular area of skin more or less densely.

One of the most remarkable axon patterns looked like an extensive vine on a trellis, with its tendrils wrapping around approximately 200 hair follicles (see image). The total length of one of these axons, with all its branches, was several times longer than the body of a mouse.

Nathans says the images now in hand will help scientists "make more sense" out of known responses to stimulation of the skin. For example, if a single nerve cell is responsible for monitoring a patch of skin a quarter of an inch square, multiple simultaneous points of pressure within that patch will only be perceived by the brain as a single signal. "That is why we can't read Braille using the skin on our backs: the multiple bumps that make up a Braille symbol are within such a small area that the axon branches can't distinguish them. By contrast, each sensory axon on the fingertip occupies a much smaller territory and this permits our fingertips to accurately distinguish small objects."

Nathans hopes that this new data can be paired with molecular and neurological data to determine the unique functions of each class of nerve cell that targets the skin. But he cautions that the ten categories they found are probably not exhaustive. "We know that there are other types of nerve endings in highly sensitive areas like our fingertips and lips. Even within the skin on the backs of mice, we suspect that our technique was not able to capture every type of nerve cell."

Many unanswered questions remain in this area, says Nathans, especially how these "beautiful branching patterns" are produced during embryonic development and what role(s) each type of nerve cell plays.

This work was supported by grants from the Human Frontier Science Program, the Johns Hopkins Brain Sciences Institute and the Howard Hughes Medical Institute.


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hao Wu, John Williams, Jeremy Nathans. Morphologic diversity of cutaneous sensory afferents revealed by genetically directed sparse labeling. eLife, 2012; 1 DOI: 10.7554/eLife.00181

Cite This Page:

Johns Hopkins Medicine. "Why our backs can't read braille: Scientists map sensory nerves in mouse skin." ScienceDaily. ScienceDaily, 19 December 2012. <www.sciencedaily.com/releases/2012/12/121219173953.htm>.
Johns Hopkins Medicine. (2012, December 19). Why our backs can't read braille: Scientists map sensory nerves in mouse skin. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2012/12/121219173953.htm
Johns Hopkins Medicine. "Why our backs can't read braille: Scientists map sensory nerves in mouse skin." ScienceDaily. www.sciencedaily.com/releases/2012/12/121219173953.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) — Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) — Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) — Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins