Featured Research

from universities, journals, and other organizations

Long-sought structure of protein necessary for cell-to-cell interaction described

Date:
January 6, 2013
Source:
The Scripps Research Institute
Summary:
Scientists know that cells in all higher organisms need to bind to each other for the development, architecture, maintenance and function of tissues. Mysteries have remained, however, about exactly how cells manage this feat.

Scientists from Scripps Florida have solved a puzzle in cellular biology with the structure of a protein called α-catenin.
Credit: Photo courtesy of the Izard lab, The Scripps Research Institute, Florida campus.

Scientists know that cells in all higher organisms need to bind to each other for the development, architecture, maintenance and function of tissues. Mysteries have remained, however, about exactly how cells manage this feat.

Related Articles


Scientists from the Florida campus of The Scripps Research Institute (TSRI) have now solved part of this puzzle by defining the structure of a protein known as α-catenin, which is essential to this process.

The work was published online ahead of print on January 6, 2012, by the journal Nature Structural & Molecular Biology.

Chain, Chain, Chain

Our cells bind to each other using specialized cell surface adhesion complexes called adherens junctions, which direct the formation of tight, Velcro-like contacts among cells.

Adherens junctions are made up of three types of proteins -- cadherin, α-catenin and β-catenin. First, cadherin receptors, which span the cell membrane, direct the binding of cells to each other using domains that project outside the cell. Second, their tail domains, found on the inside of the cell, bind to the protein β-catenin, which, in turn, is bound to α-catenin.

The term catenin is derived from the Latin word for chain, catena, and these three proteins literally make a chain. This complex is then stabilized when the end of the chain, α-catenin, attaches to the molecular framework of the cell, the cytoskeleton. Without this, link cells would simply be amorphous piles of goo. Furthermore, alterations of cadherins, β-catenin and/or α-catenin can lead to marked changes in cell signaling, growth and migration -- which can result in abnormalities and cancer.

Confronting a Paradox

Exactly how α-catenin provides links to the cytoskeleton and to the cadherin-β-catenin complex, however, has long puzzled scientists.

Scientists have known that α-catenin forms links to the cytoskeleton by binding to a protein called F-actin (the "F" stands for filament), which is found in species ranging from yeast to humans. The paradox for scientists has been that, despite being able to bind to F-actin on its own, when bound to α-catenin α-catenin cannot bind to F-actin. That is, the binding of α-catenin to F-actin and to β-catenin are, in the test tube, mutually exclusive. So how does α-catenin bind to F-actin versus β-catenin and how is the final link in the chain stabilized in cells?

To resolve this paradox, the scientists crystallized and determined the structure of a nearly full-length human α-catenin. This structure showed why α-catenin cannot simultaneously bind to F-actin and β-catenin. Specifically, in its unbound state, α-catenin was shown to be an asymmetric dimer, where the two subunits have remarkable differences in their architecture that appear to together create the binding site for F-actin. Binding of β-catenin to α-catenin disrupts the interaction of its two subunits, changing its architecture and displacing F-actin.

The second part of the puzzle -- how cadherin-β-catenin and α-catenin-F-actin complexes are linked together in cells -- was resolved when the scientists realized that another cytoskeleton protein called vinculin, which can also bind to F-actin, plays a critical role in this process. The scientists established the structures of dimeric α-catenin alone and when in complex with pre-activated vinculin. The results showed that vinculin binding did not disrupt the α-catenin dimer and that both partners of the vinculin-α-catenin complex were in fact capable of binding to F-actin, a scenario that stabilizes adhesion complexes.

The study, "Dimer Asymmetry Defines α-catenin Interactions" (doi 10.1038/nsmb.2479) was authored by Staff Scientist Erumbi S. Rangarajan and Associate Professor T. Izard of TSRI.

The laboratory is supported by the National Institute of General Medical Sciences of the National Institutes of Health (GM071596 and GM094483) and by the State of Florida.


Story Source:

The above story is based on materials provided by The Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Erumbi S Rangarajan, Tina Izard. Dimer asymmetry defines α-catenin interactions. Nature Structural & Molecular Biology, 2013; DOI: 10.1038/nsmb.2479

Cite This Page:

The Scripps Research Institute. "Long-sought structure of protein necessary for cell-to-cell interaction described." ScienceDaily. ScienceDaily, 6 January 2013. <www.sciencedaily.com/releases/2013/01/130106145652.htm>.
The Scripps Research Institute. (2013, January 6). Long-sought structure of protein necessary for cell-to-cell interaction described. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/01/130106145652.htm
The Scripps Research Institute. "Long-sought structure of protein necessary for cell-to-cell interaction described." ScienceDaily. www.sciencedaily.com/releases/2013/01/130106145652.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins