Featured Research

from universities, journals, and other organizations

New insights into cell division from simplified model: Artificial minimal actin cortex developed

Date:
January 14, 2013
Source:
Max Planck Institute of Biochemistry
Summary:
All living organisms consist of cells that have arisen from other living cells by the process of cell division. However, it is not yet fully understood just how this important process takes place. Scientists have now developed a minimal biological system, which brings together key components of the cell division apparatus. With the aid of this minimal model, the researchers were able to take a closer look at the biophysical mechanisms involved.

Researchers have constructed an artificial minimal actin cortex (MAC).
Credit: Image courtesy of Max Planck Institute of Biochemistry

All living organisms consist of cells that have arisen from other living cells by the process of cell division. However, it is not yet fully understood just how this important process takes place. Scientists at the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich have now developed a minimal biological system, which brings together key components of the cell division apparatus. With the aid of this minimal model, the researchers were able to take a closer look at the biophysical mechanisms involved.

"Our model may help to develop and test new treatments for diseases caused by errors in cell division," said Sven Vogel, scientist at the MPI of Biochemistry. The results of the study have now been published in the new journal eLife.

The researchers of the department "Cellular and Molecular Biophysics" try to remodel the structures of a cell with the help of a modular approach. Their aim is to observe and visualize step by step the underlying mechanisms of living systems. "Our vision is to assemble more and more building blocks of natural and synthetic biomolecules until we finally have the minimal version of a cell in front of us," said Petra Schwille, director at the MPI of Biochemistry. Using such an approach, the scientists have now succeeded in investigating the process of cell division in greater detail.

Making two out of one

During cell division both the genetic information and the cell plasma must be distributed correctly to the two daughter cells. Moreover, the two newly created cells must be separated physically from each other. An important component of this cell division machinery is the cell cortex. This layer is located directly below the cell membrane and consists of a thin layer of thread-like protein chains, so-called actin filaments. During the actual division process, myosin motors from the interior of the cell exert force on the actin filaments, causing the cell cortex to constrict in the middle and ultimately to divide.

The Max Planck researchers have now constructed an artificial minimal actin cortex (MAC) on which they can study the physical phenomena more precisely. The researchers combined only the most essential components of the cell division machinery, thus creating a synthetic minimal system. Such a system is a very simplified model for complex processes. In nature, by contrast, cells took several million years to develop and were not precisely planned and constructed. "For that reason some of the processes may be more complex than they theoretically need to be," the biophysicist Sven Vogel said. "This complexity often makes it almost impossible to study the basic mechanisms in detail."

One research finding the minimal system revealed was that the addition of myosin motors to the MAC induces actin pattern formation. Moreover, the myosin motors break individual actin filaments into fragments and compact them. The Martinsried researchers are certain that artificial minimal systems will contribute to a detailed understanding of cell division. Vogel added: "Our findings and minimal systems may help to develop and test new treatments for diseases that are caused by errors in cell division."


Story Source:

The above story is based on materials provided by Max Planck Institute of Biochemistry. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sven K Vogel, Zdenek Petrasek, Fabian Heinemann, Petra Schwille. Myosin motors fragment and compact membrane-bound actin filaments. eLife, 2013; 2 DOI: 10.7554/eLife.00116

Cite This Page:

Max Planck Institute of Biochemistry. "New insights into cell division from simplified model: Artificial minimal actin cortex developed." ScienceDaily. ScienceDaily, 14 January 2013. <www.sciencedaily.com/releases/2013/01/130114092557.htm>.
Max Planck Institute of Biochemistry. (2013, January 14). New insights into cell division from simplified model: Artificial minimal actin cortex developed. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2013/01/130114092557.htm
Max Planck Institute of Biochemistry. "New insights into cell division from simplified model: Artificial minimal actin cortex developed." ScienceDaily. www.sciencedaily.com/releases/2013/01/130114092557.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins