Featured Research

from universities, journals, and other organizations

New way to battle bacteria

Date:
January 23, 2013
Source:
SUNY College of Environmental Science and Forestry
Summary:
Scientists are developing a way to disrupt the process by which bacteria become virulent. The work could have widespread implications for human health.

Dr. Christopher Nomura SUNY College of Environmental Science and Forestry.
Credit: SUNY-ESF

Scientists at the SUNY College of Environmental Science and Forestry (ESF) are developing a biochemical process that uses a protein molecule to disrupt the process by which bacteria become virulent, a finding that could have widespread implications for human health.

The work is led by Dr. Christopher Nomura of the college's Department of Chemistry, who discovered that a simple protein molecule can interrupt the process bacteria use to move, eat, attach to surfaces, and communicate with one another or, in other words, to become potentially harmful.

"This is fundamentally a new way to think about blocking bacteria from becoming virulent," Nomura said.

Exposing bacteria to the synthetic protein disrupts the developmental sequence that is common among such organisms, he said. This gives the process the potential to work against an array of bacteria including those that threaten patients with certain illnesses, such as cystic fibrosis, stubborn strains that commonly affect hospital patients and strains that occur in desert environments and prove troublesome for U.S. troops serving in Afghanistan or similar arid environments.

The college is seeking to patent the process.

Nomura's research group focuses on the synthesis and properties of eco-friendly, biologically based materials, in particular the production of biobased polymers that can be used to make biodegradable plastics. He and his postdoctoral researcher, Dr. Benjamin Lundgren, were working on experiments in that realm when they overproduced some proteins that they thought would increase the expression of genes to produce the bioplastic materials. But instead of making the bacteria produce large quantities of plastics, the protein had the opposite effect.

Nomura began to investigate the chemistry behind the startling development and discovered that specific proteins can attach themselves to the bacterial DNA in a manner that essentially prevents the organism from expressing the information contained within its genes and results in short circuiting the ability of bacteria to respond to changes in their environment.

The antimicrobial process has an added advantage over traditional antibiotics currently in use: It will be extremely difficult for bacteria to do an end run around the process by simply mutating. Since the protein targets hundreds of genes simultaneously, a corresponding mutation would also involve hundreds of changes. Traditional antibiotics attack only one aspect of the bacteria's development, making mutation a simpler task.

"Basically, we're interrupting the flow of genetic information in the cell, in effect 'hacking' the program of the bacterial cell," Nomura said. "If we can fundamentally control the mechanism of gene expression, we can control what the bacteria are capable of doing. We can prevent them from becoming virulent."


Story Source:

The above story is based on materials provided by SUNY College of Environmental Science and Forestry. Note: Materials may be edited for content and length.


Cite This Page:

SUNY College of Environmental Science and Forestry. "New way to battle bacteria." ScienceDaily. ScienceDaily, 23 January 2013. <www.sciencedaily.com/releases/2013/01/130123133411.htm>.
SUNY College of Environmental Science and Forestry. (2013, January 23). New way to battle bacteria. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2013/01/130123133411.htm
SUNY College of Environmental Science and Forestry. "New way to battle bacteria." ScienceDaily. www.sciencedaily.com/releases/2013/01/130123133411.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Newsy (Apr. 20, 2014) A 9-year-old Michigan boy was exploring a creek when he came across a 10,000-year-old tooth from a prehistoric mastodon. Video provided by Newsy
Powered by NewsLook.com
Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins