Featured Research

from universities, journals, and other organizations

Tomorrow's life-saving medications may currently be living at the bottom of the sea

Date:
January 29, 2013
Source:
Oregon Health & Science University
Summary:
Two new research articles demonstrate how the next class of powerful medications may currently reside at the bottom of the ocean. In both cases, the researchers were focused on ocean-based mollusks – a category of animal that includes snails, clams and squid and their bacterial companions.

OHSU researchers, in partnership with scientists from several other institutions, have published two new research papers that signal how the next class of powerful medications may currently reside at the bottom of the ocean. In both cases, the researchers were focused on ocean-based mollusks -- a category of animal that includes snails, clams and squid and their bacterial companions.

Sea life studies aid researchers in several ways, including the development of new medications and biofuels. Because many of these ocean animal species have existed in harmony with their bacteria for millions of years, these benign bacteria have devised molecules that can affect body function without side effects and therefore better fight disease.

To generate these discoveries, a research partnership called the Philippine Mollusk Symbiont International Cooperative Biodiversity Group was formed. As the name suggests, the group specifically focuses on mollusks, a large phylum of invertebrate animals, many of which live under the sea. Margo Haygood, Ph.D., an OHSU marine microbiologist, leads the group, with partners at the University of the Philippines, the University of Utah, The Academy of Natural Sciences in Philadelphia and Ocean Genome Legacy. Both of these newly published papers are the result of the efforts of this research group.

Here are brief summaries of the two studies:

Shipworms: The source of a new antibiotic

The paper focuses on a unique animal called a shipworm, which despite its name is not a worm. Shipworms are mollusks and are clam-like creatures that use their shells as drills and feed on wood by burrowing into the wood fibers. They are best known for affixing themselves to the sides of wooden ships. Over time, their wood feeding causes serious damage to the hull of those ships.

The research team initially focused on shipworms because the animals' creative use of bacteria to convert wood -- a poor food source lacking proteins or nitrogen -- into a suitable food source where the animal can both live and feed.

This research revealed that one form of bacteria utilized by shipworms secretes a powerful antibiotic, which may hold promise for combatting human diseases.

"The reason why this line of research is so critical is because antibiotic resistance is a serious threat to human health," said Margo Haygood, Ph.D., a member of the OHSU Institute of Environmental Health and a professor of science and engineering in the OHSU School of Medicine.

"Antibiotics have helped humans battle infectious diseases for over 70 years. However, the dangerous organisms these medications were designed to protect us against have adapted due to widespread use. Without a new class of improved antibiotics, older medications are becoming less and less effective and we need to locate new antibiotics to keep these diseases at bay. Bacteria that live in harmony with animals are a promising source. "

Cone snails: Another possible yet surprising source for new medicines

A team led by researchers from the University of Utah, and including OHSU and the University of the Philippines researchers, took part in a separate study of cone snails collected in the Philippines. Cone snails are also mollusks. There have been few previous studies to determine if bacteria associated with these snails might assist in drug development. This is because the snails have thick shells and they can also defend themselves through the use of toxic venoms. Because of the existence of these significant defensive measures, it was assumed that the bacteria they carry do not have to produce additional chemical defenses that might also translate into human medications. The latest research shows that this previous assumption is incorrect.

The research demonstrated how bacteria carried by cone snails produce a chemical that is neuroactive, meaning that it impacts the function of nerve cells, called neurons, in the brain. Such chemicals have promise for treatment of pain.

"Mollusks with external shells, like the cone snail, were previously overlooked in the search for new antibiotics and other medications," said, Eric Schmidt, Ph.D., a biochemist at the university of Utah and lead author of the article.

"This discovery tells us that these animals also produce compounds worth studying. It's hoped that these studies may also provide us with valuable knowledge that will help us combat disease."


Story Source:

The above story is based on materials provided by Oregon Health & Science University. Note: Materials may be edited for content and length.


Journal References:

  1. S. I. Elshahawi, A. E. Trindade-Silva, A. Hanora, A. W. Han, M. S. Flores, V. Vizzoni, C. G. Schrago, C. A. Soares, G. P. Concepcion, D. L. Distel, E. W. Schmidt, M. G. Haygood. PNAS Plus: Boronated tartrolon antibiotic produced by symbiotic cellulose-degrading bacteria in shipworm gills. Proceedings of the National Academy of Sciences, 2013; 110 (4): E295 DOI: 10.1073/pnas.1213892110
  2. Zhenjian Lin, JoshuaP. Torres, MaryAnne Ammon, Lenny Marett, RussellW. Teichert, ChristopherA. Reilly, JasonC. Kwan, RonaldW. Hughen, Malem Flores, Ma.Diarey Tianero, Olivier Peraud, JamesE. Cox, AlanR. Light, AaronJosephL. Villaraza, MargoG. Haygood, GiselaP. Concepcion, BaldomeroM. Olivera, EricW. Schmidt. A Bacterial Source for Mollusk Pyrone Polyketides. Chemistry & Biology, 2013; 20 (1): 73 DOI: 10.1016/j.chembiol.2012.10.019

Cite This Page:

Oregon Health & Science University. "Tomorrow's life-saving medications may currently be living at the bottom of the sea." ScienceDaily. ScienceDaily, 29 January 2013. <www.sciencedaily.com/releases/2013/01/130129130949.htm>.
Oregon Health & Science University. (2013, January 29). Tomorrow's life-saving medications may currently be living at the bottom of the sea. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2013/01/130129130949.htm
Oregon Health & Science University. "Tomorrow's life-saving medications may currently be living at the bottom of the sea." ScienceDaily. www.sciencedaily.com/releases/2013/01/130129130949.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rodents Rampant in Gardens Around Louvre

Rodents Rampant in Gardens Around Louvre

AP (July 29, 2014) Food scraps and other items left on the grounds by picnickers brings unwelcome visitors to the grounds of the world famous and popular Louvre Museum in Paris. (July 29) Video provided by AP
Powered by NewsLook.com
Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins