Featured Research

from universities, journals, and other organizations

Humble 'virtual chimney' fences could reduce impact of airport pollution

Date:
January 31, 2013
Source:
Engineering and Physical Sciences Research Council
Summary:
Simple 'blast' fences called baffles could deliver improvements in air quality for people living near airports, new research has found. Placed behind a runway, the baffles could serve as a 'virtual chimney', funneling emissions from aircraft engines upwards where they can disperse more effectively, thereby reducing the environmental impact on people living nearby.

Testing the baffles at Cranfield airport.
Credit: Image courtesy of Engineering and Physical Sciences Research Council

Simple 'blast' fences called baffles could deliver improvements in air quality for people living near airports, new research has found.

Placed behind a runway, the baffles could serve as a 'virtual chimney', funnelling emissions from aircraft engines upwards where they can disperse more effectively, thereby reducing the environmental impact on people living nearby.

Prototype baffles have been tested by a team of researchers from Manchester Metropolitan University, Cranfield University, the University of Southampton and the University of Cambridge, with funding from the Engineering and Physical Sciences Research Council (EPSRC).

After preliminary wind tunnel testing of various baffle shapes carried out by Cranfield University, an array of three rows of baffles was tested using laser scanning (Lidar, which is the optical equivalent of Radar) and chemical sensor techniques at Cranfield Airport in Bedfordshire. This demonstrated that the aircraft exhaust plume could be made to leave the ground within the airport's boundary fence, using prototype baffles of less than a man's height and constructed out of low-cost agricultural windbreak netting on lightweight frames.

Dr Mike Bennett, who led the project, says: "Airfield surfaces are typically covered with grass, over which the wind can blow freely. An array of baffles makes the surface rough in an aerodynamic sense. This sucks the momentum out of the exhaust jet, allowing its natural buoyancy to come into play. By suitably angling the baffles, we can also give the exhaust an upwards push, encouraging it to rise away from the ground.

"The baffles we tested were tilted at angles between 40 and 60 in order to optimise this vertical flow -- and to ensure the baffles didn't blow over! Although the exhaust will still disperse to the ground eventually, it will do so at a lower concentration. We might hope to see a reduction in surface concentrations of around 50 per cent at the perimeter fence behind the place where aircraft are taking off."

Long-term ground-level nitrogen dioxide (NO2) concentrations around many major airports in Europe already exceed the legal limit enforced by the EU.

The aim of the trial was essentially to test the baffles' aerodynamics. As the prototype installation was temporary, it was constructed very differently from how a permanent installation might be made. Each baffle must be sufficiently robust to withstand the 80-90 knot blast from a jet engine, but flimsy enough to collapse harmlessly if an aircraft were to hit it. In the trial, this was achieved by restricting the prototype baffle widths to about two metres but it would be feasible to make them much narrower in a permanent installation. For full-scale use an area of baffles in the order of a thousand square metres would need to be erected behind a runway.

The tests also showed that the baffles dampened engine noise downstream by a modest amount and were helpful in reducing jet blast on the airport perimeter.

"There's no reason why baffles couldn't start to be installed at airports within two or three years," Dr Bennett says. "From the point of view of local air quality, they represent a quick, cheap supplement to developing low-NOx jet engines."

The project was carried out under the auspices of the EPSRC-funded Airport Energy Technologies Network (AETN), which was established in 2008 to undertake cutting-edge research in the field of aviation.


Story Source:

The above story is based on materials provided by Engineering and Physical Sciences Research Council. Note: Materials may be edited for content and length.


Cite This Page:

Engineering and Physical Sciences Research Council. "Humble 'virtual chimney' fences could reduce impact of airport pollution." ScienceDaily. ScienceDaily, 31 January 2013. <www.sciencedaily.com/releases/2013/01/130131120853.htm>.
Engineering and Physical Sciences Research Council. (2013, January 31). Humble 'virtual chimney' fences could reduce impact of airport pollution. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2013/01/130131120853.htm
Engineering and Physical Sciences Research Council. "Humble 'virtual chimney' fences could reduce impact of airport pollution." ScienceDaily. www.sciencedaily.com/releases/2013/01/130131120853.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins