Featured Research

from universities, journals, and other organizations

Electroporation of cell cultures for less than one Euro

Date:
February 7, 2013
Source:
Plataforma SINC
Summary:
Researchers have developed a technique that improves and cuts the cost of a technique called electroporation, which involves opening pores in cell membranes using an electric field to introduce substances like drugs and DNA. Current methods are aggressive and expensive whereas the new system manages to apply low voltage electroporation with a small printed circuit board, which costs less than a Euro per unit and does not damage cells.

The plate for performing electroporation has the shape of a disk and it is a little smaller than a 20 cent coin.
Credit: UPC

Researchers from the Polytechnic University of Catalonia have developed a technique that improves and cuts the cost of a technique called electroporation, which involves opening pores in cell membranes using an electric field to introduce substances like drugs and DNA. Current methods are aggressive and expensive whereas the new system manages to apply low voltage electroporation with a small printed circuit board, which costs less than a Euro per unit and does not damage cells.

Related Articles


Two US firms in Boston and San Francisco operating in the biotechnology equipment sector have already expressed their interest in the new system for the electroporation of cell cultures developed and patented by researchers at the Biomedical Engineering Research Centre (CREB) of the Polytechnic University of Catalonia (UPC).

Electroporation consists of opening the pores in the cell membranes using an external electric field to insert certain substances such as drugs, DNA and RNA. It is used for example in gene therapies and molecular biology experimentation. "Until now, its use has been rather restricted because current systems are expensive and awkward," as explained by the researcher Ramón Bragós who undertook this project along with PhD student Tomás García-Sánchez.

Different electroporation techniques are used for example in the process of inserting exogenous nucleic acids into eukaryotic cells. This process is called transfection and in 2012 it generated a global turnover of 650 million euros, according to data from the UPC.

Bragós outlines that the electroporation system developed by the UPC simplifies that process and reduces many of the costs compared to techniques being used at present. This makes its use in research easier.

The UPC's system can be applied in the electroporation of mammal cell cultures. As the researcher explains, in this case cells grow adherent to the bottom of plates. "These cells are 'accustomed' to being in a tissue, in a compact environment where they touch their neighbours. When they are cultivated they stick to the bottom and grow until they come in contact with other cells thus forming a monolayer," adds the researcher.

Avoiding cell stress

According to Bragós, the electroporation method used up to now is very aggressive. Firstly, an enzyme must be added to detach the cells adhered to the bottom of the culture plate. Then they must be transferred to a special cuvette with electrodes where the electrical discharge is applied. Lastly, the cells must then be returned to the plate. All this combined causes stress in the cells and only a fraction survives. This translates into significant losses.

"We have developed a small plate in the shape of a disk. In its lower face it contains a collection of electrodes that allow for high output electroporation. The devices are made to match the size of the plate containing the cultures, the most common being a centimetre in diameter."

Ramón Bragós explains that the added value of the device is that it allows the electroporation in the recipient in which cell culture is already taking place without the need for them to be extracted. This usually occurs in Petri dishes or multiwell plates. The device incorporates microseparations that ensure that the disk is situated some 10 microns apart. Therefore, without touching or crushing the cells the discharge is performed under 20 volts and then removed.

"We initially thought of developing a device with microelectronic technology but we managed to do it with printed circuit technology, which is much cheaper. Each disk ends up costing less than one Euro per unit, which is very competitive compared to current devices that go from one Euro to 100 euros per unit," points out the researcher.

In addition, Bragós points out that the low cost of the new devices means that laboratories can use them on a single use basis. This eliminates culture contamination problems.

The technique is also safer for those carrying out the experiments thanks to its low discharge of less than 20 volts compared to conventional techniques that can use up to hundreds or even thousands of volts, according to the researcher.

This project was financed through Catalonia's Technology Assessment Support Programme of the Generalitat's Agencia ACC1Ó.

In addition, the initiative enjoyed the active participation of the group lead by Dr Anna Maria Gómez-Foix from the Department of Biochemistry and Molecular Biology of the University of Barcelona.

Experimentation with small RNA fragments

The PhD student Tomás García-Sánchez has played a fundamental role in developing the new technique applied to the UPC's electroporation of cultures and is currently writing his thesis on this project.

García-Sánchez explains that during the process of developing the new system they experimented with a transfection technique based on inserting small RNA fragments into the siRNA (small interfering RNA) culture cells. The main function of these fragments is to block specific gene expression once inserted into the cellular cytoplasm.

"The possible gene therapy with siRNA is on the rise in the world of biomedical research nowadays with its application in antiviral therapies and neurodegenerative illnesses, for example," indicates the researcher.

"The fact that we have managed to simplify and make the electroporation process cheaper has opened the door for molecular biology researchers to access a technique with many prospects," he concludes.


Story Source:

The above story is based on materials provided by Plataforma SINC. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tomás García-Sánchez, Beatriz Sánchez-Ortiz, Ingrid Vila, Maria Guitart, Javier Rosell, Anna M. Gómez-Foix, Ramón Bragós. Design and Implementation of a Microelectrode Assembly for Use on Noncontact In Situ Electroporation of Adherent Cells. The Journal of Membrane Biology, 2012; 245 (10): 617 DOI: 10.1007/s00232-012-9474-y

Cite This Page:

Plataforma SINC. "Electroporation of cell cultures for less than one Euro." ScienceDaily. ScienceDaily, 7 February 2013. <www.sciencedaily.com/releases/2013/02/130207074142.htm>.
Plataforma SINC. (2013, February 7). Electroporation of cell cultures for less than one Euro. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2013/02/130207074142.htm
Plataforma SINC. "Electroporation of cell cultures for less than one Euro." ScienceDaily. www.sciencedaily.com/releases/2013/02/130207074142.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) — The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) — Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com
Mysterious Glow Worms Found in the Amazon

Mysterious Glow Worms Found in the Amazon

Buzz60 (Nov. 20, 2014) — Wildlife photographer Jeff Cremer teamed up with entomologist Aaron Pomerantz and others to investigate a predatory glow worm found in the Amazon. Patrick Jones (@Patrick_E_Jones) explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins