Featured Research

from universities, journals, and other organizations

Cooling properties of atmospheric molecule discovered

Date:
April 24, 2013
Source:
Manchester University
Summary:
Scientists have discovered further evidence for the existence of new molecules in the atmosphere that have the potential to off-set global warming by reacting with airborne pollutants.

Image shows ball and stick model of a sulphur dioxide molecule.
Credit: Ben Mills

Scientists have discovered further evidence for the existence of new molecules in the atmosphere that have the potential to off-set global warming by reacting with airborne pollutants.

Researchers from The University of Manchester, Bristol University, Southampton University and Sandia National Laboratories in California have detected the second simplest Criegee intermediate molecule -- acetaldehyde oxide -- and measured its reactivity.

Intermediates are molecules that are formed during a chemical reaction and react further to produce the final chemicals of the reaction. Criegee intermediates -- carbonyl oxides -- were first identifies by the team in January last year and shown to be powerful oxidisers, reacting with pollutants such as nitrogen dioxide and sulphur dioxide.

The authors, whose latest study is again published in the journal Science, believe Criegee intermediates have the potential to cool the planet by converting these pollutants into sulphate and nitrate compounds that will lead to aerosol and cloud formation.

Professor Carl Percival, who led the Manchester team in the University's School of Earth, Atmospheric and Environmental Sciences, said: "We have carried out the first ever studies on the second simplest Criegee intermediate and were able to show that it also reacts extremely quickly with sulphur dioxide to produce sulphates under experimental conditions.

"We can therefore say that the reaction of these intermediates with sulphur dioxide will have a significant impact on sulphuric acid production in the atmosphere if they follow the pattern established by these two studies.

He continued: "One of the main questions from our first study was if this increased reactivity would be observed for other Criegee intermediates, so with these findings we now have additional evidence that Criegee intermediates are indeed powerful oxidisers of pollutants such as nitrogen dioxide and sulphur dioxide.

"What this study suggests is that the biosphere could have a significant impact on aerosol production and thus potentially climate cooling via the formation of Criegee intermediates. The next steps will be to carry out modelling studies to quantify the impact of Criegee intermediates on climate and to quantify the level of alkene present in various environments."

The formation of Criegee intermediates or biradicals was first postulated by the German chemist Rudolf Criegee in the 1950s but, despite their importance, it had not been possible to study the chemicals in the laboratory. The detection of the molecules was made possible through a unique apparatus that uses light from a third-generation synchrotron facility at the Lawrence Berkeley National Laboratory.

The latest study has also revealed which of the two isomers of acetaldehyde oxide is the most reactive. Isomers are molecules that contain the same atoms but arranged in different combinations, while conformational isomerism refers to the way the atoms of a molecule are rotated around a single chemical bond.

"In this new paper we have been able to show that the reactivity depends on the conformer of acetaldehyde oxide in a dramatic way," said Professor Percival. "The 'anti' conformer is much more reactive than the 'syn' conformer, which we believe more likely to be formed in the atmosphere. This enabled us to measure the rate coefficient for reaction with water for the first time; the removal, via reaction with water, is of vital importance if we want to understand the role of Criegee intermediates in the atmosphere."

Sandia combustion chemist Craig Taatjes, the lead author on the paper, added: "Observing conformer-dependent reactivity represents the first direct experimental test of theoretical predictions. The work will be of tremendous importance in validating the theoretical methods that are needed to accurately predict the kinetics for reactions of Criegee intermediates that still cannot be measured directly."


Story Source:

The above story is based on materials provided by Manchester University. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok, D. L. Osborn, C. J. Percival. Direct Measurements of Conformer-Dependent Reactivity of the Criegee Intermediate CH3CHOO. Science, 2013; 340 (6129): 177 DOI: 10.1126/science.1234689

Cite This Page:

Manchester University. "Cooling properties of atmospheric molecule discovered." ScienceDaily. ScienceDaily, 24 April 2013. <www.sciencedaily.com/releases/2013/04/130424081321.htm>.
Manchester University. (2013, April 24). Cooling properties of atmospheric molecule discovered. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2013/04/130424081321.htm
Manchester University. "Cooling properties of atmospheric molecule discovered." ScienceDaily. www.sciencedaily.com/releases/2013/04/130424081321.htm (accessed April 18, 2014).

Share This



More Earth & Climate News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drought Concerns May Hurt Lake Tourism

Drought Concerns May Hurt Lake Tourism

AP (Apr. 18, 2014) Operators of recreational businesses on western reservoirs worry that ongoing drought concerns will keep boaters and other visitors from flocking to the popular summer attractions. (April 18) Video provided by AP
Powered by NewsLook.com
Deadly Avalanche Sweeps Slopes of Mount Everest

Deadly Avalanche Sweeps Slopes of Mount Everest

AP (Apr. 18, 2014) At least six Nepalese guides are dead after an avalanche swept the slopes of Mount Everest along a route used to climb the world's highest peak. (April 18) Video provided by AP
Powered by NewsLook.com
The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Reaction Rates of Second Key Atmospheric Component Measured

Apr. 11, 2013 Researchers have successfully measured reaction rates of a second Criegee intermediate, CH3CHOO, and proven that the reactivity of the atmospheric chemical depends strongly on which way the molecule ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins