Featured Research

from universities, journals, and other organizations

How young genes gain a toehold on becoming indispensable

Date:
June 6, 2013
Source:
Fred Hutchinson Cancer Research Center
Summary:
Scientists have, for the first time, mapped a young gene’s short, dramatic evolutionary journey to becoming essential, or indispensable. The researchers detail one gene’s rapid switch to a new and essential function in the fruit fly, challenging the long-held belief that only ancient genes are important.

This is imagery of cells dividing, recorded from video microscopy. The image on the left depicts normal cell division in a fruit fly cell. The cell on the right has had the Umbrea gene removed, and has failed to divide normally, resulting in cell death.
Credit: Photos courtesy Barbara Mellone

Fred Hutchinson Cancer Research Center scientists have, for the first time, mapped a young gene's short, dramatic evolutionary journey to becoming essential, or indispensable. In a study published online June 6 in Science, the researchers detail one gene's rapid switch to a new and essential function in the fruit fly, challenging the long-held belief that only ancient genes are important. ' "We really haven't paid much attention to what is new, because there's so much emphasis on what is old," said Harmit Singh Malik, Ph.D., a member of the Hutchinson Center's Basic Sciences Division and senior author of the study. "This work breaks the paradigm that new genes by definition are not really that important, because if they were important they would be much older."

Related Articles


The less a gene has mutated over the millions or billions of years of its lifespan, the more likely it is to play a key role for its host. But it turns out that the converse is not necessarily true. Young and rapidly evolving genes can be indispensable too. Scientists at the University of Chicago were surprised to find in 2010 that young genes acquire essential functions in the same proportion as old genes, but nobody had explored the biology behind the phenomenon.

Malik and his colleagues examined one such case in detail, starting from the gene's birth and its pathway to a new purpose and evolutionary importance. The fruit fly Drosophila melanogaster, a common model organism in laboratory studies, is host to the relatively new gene Umbrea, which duplicated and began to diverge from its parent gene a mere 15 million years ago.

The scientists compared Umbrea with its parent gene, HP1B, by looking at where each gene's protein product tracks within the cell. Both proteins coat chromosomes, but the Umbrea protein specifically hones to centromeres, the specialized centers that help chromosomes duplicate and segregate when cells divide.

In contrast to its parent gene, fruit flies need Umbrea to survive, and the researchers found that cells missing the Umbrea protein cannot shuffle their chromosomes to the correct cell during cell division. They then tracked the gene's evolutionary progress from dispensable to crucial by examining Umbrea's genetic differences between related fruit fly species and pinpointed a short stretch of DNA that led to the gene's essentiality.

Understanding how Umbrea accomplished its quick transition to its new role could help scientists pinpoint other processes in the cell that are subject to the same form of rapid evolution as centromere proteins, including genes that mutate to become essential for the survival of cancer cells. Such evolution of cancer genes happens extremely quickly, in the lifetime of one individual.

Umbrea's rise was not quite as fast, but 15 million years is brief when compared to the majority of essential genes four to five times its age in the fruit fly, and a few important genes that are more than a billion years old.

"The genetic conflicts that lead to quick changes like those found in Umbrea can also shed light on evolutionary arms races between chromosomes, or even between viruses and host immune genes," said Benjamin Ross, a graduate research assistant in Malik's laboratory and lead author of the study.

The team's findings also point to potential limitations for laboratory model organisms as windows into our own health. While many genes do perform similar tasks in such disparate animals as fruit flies and humans, scientists may be overlooking genes unique to humans that are nevertheless vital. Although Drosophila melanogaster needs Umbrea for its survival, several other very closely related fruit fly species lack the gene entirely. "What might be essential in one species or even in one tissue type, like a cancer cell, might not be essential in another tissue type or related species," said Malik, also a Howard Hughes Medical Institute Early Career Scientist.

Researchers from the University of Connecticut in Storrs, Conn., and Ludwig Maximilians University of Munich in Germany also contributed to the study. The National Institutes of Health, the National Science Foundation, the Howard Hughes Medical Institute, the European Union Network and the Mathers Foundation funded the research.


Story Source:

The above story is based on materials provided by Fred Hutchinson Cancer Research Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. D. Ross, L. Rosin, A. W. Thomae, M. A. Hiatt, D. Vermaak, A. F. A. de la Cruz, A. Imhof, B. G. Mellone, H. S. Malik. Stepwise Evolution of Essential Centromere Function in a Drosophila Neogene. Science, 2013; 340 (6137): 1211 DOI: 10.1126/science.1234393

Cite This Page:

Fred Hutchinson Cancer Research Center. "How young genes gain a toehold on becoming indispensable." ScienceDaily. ScienceDaily, 6 June 2013. <www.sciencedaily.com/releases/2013/06/130606154400.htm>.
Fred Hutchinson Cancer Research Center. (2013, June 6). How young genes gain a toehold on becoming indispensable. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2013/06/130606154400.htm
Fred Hutchinson Cancer Research Center. "How young genes gain a toehold on becoming indispensable." ScienceDaily. www.sciencedaily.com/releases/2013/06/130606154400.htm (accessed April 19, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Un-Bee-Lievable: Bees on the Loose After Washington Truck Crash

Un-Bee-Lievable: Bees on the Loose After Washington Truck Crash

Reuters - US Online Video (Apr. 17, 2015) — A truck carrying honey bees overturns near Lynnwood, Washington, spreading boxes of live bees across the highway. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Our Love Of Puppy Dog Eyes Explained By Science

Our Love Of Puppy Dog Eyes Explained By Science

Newsy (Apr. 17, 2015) — Researchers found a spike in oxytocin occurs in both humans and dogs when they gaze into each other&apos;s eyes. Video provided by Newsy
Powered by NewsLook.com
Dog Flu Spreading in Midwestern States

Dog Flu Spreading in Midwestern States

AP (Apr. 17, 2015) — Dog flu is spreading in several Midwestern states. Dog daycare centers and veterinary offices are taking precautions. (April 17) Video provided by AP
Powered by NewsLook.com
Raw: Rare Whale Spotted in Gulf of Mexico

Raw: Rare Whale Spotted in Gulf of Mexico

AP (Apr. 17, 2015) — Researchers from the E/V Nautilus had quite a surprise Tuesday, when a curious sperm whale swam around their remotely operated vehicle in the Gulf of Mexico. Cameras captured the encounter. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins