Featured Research

from universities, journals, and other organizations

The swing of architect genes

Date:
June 6, 2013
Source:
Université de Genève
Summary:
Architect genes are responsible for organizing structures of the body during embryonic development. Some of them, namely the Hox genes, are involved in the formation of forelimbs. They are activated in two successive waves, enabling the formation of the arm, then the hand. Scientists are uncovering the workings of this complex process.

A few days. This is the short period of time during which our body's construction plan is put in place, during its embryonic life. The appearance of limbs and vertebrae is orchestrated by a family of 'architect' genes called Hox, each providing precise instructions at a given time. Denis Duboule, a geneticist at the Faculty of Science of the University of Geneva (UNIGE) and at the Swiss Federal Institute of Technology in Lausanne (EPFL), demonstrated that these genes were aligned within our chromosomes according to the order of structures that will emerge: first the components of the shoulder, then the arm, and finally the fingers.

The cluster of Hoxd genes coordinates the operations of limb formation, in particular. These genes are transcribed in two successive waves, allowing the development of the arm, then the hand. "We had already discovered that the genes responsible for the hand were controlled by enhancers, specific DNA sequences located in an adjacent area, at one end of the Hoxd cluster. This regulatory domain takes on a different three-dimensional configuration, according to the degree of activity of the enhancers," says Professor Duboule.

Two distinct regulatory domains

In order to understand the molecular processes that preside over arm formation, as well as the transition to wrist and hand formation, the researchers used sophisticated techniques of genetic engineering, molecular biology, and murine embryo cell lines. "Curiously, certain Hoxd genes are involved in the origin of both the arm and the hand, while it is their absence of expression that enables wrist formation," notes Guillaume Andrey, former doctoral student at the Frontiers in Genetics National Research Center and first author of the article.

The biologists demonstrated the existence of a second regulatory domain.

However, there is an intermediary cellular territory that escapes the two regulatory controls and in which the switch is not activated: this zone will generate the wrist.

However, it is responsible for arm development and is located at the other end of the Hoxd gene cluster. They decrypted the complex dialogue established between these genes and the two adjacent domains: "Certain Hoxd genes associate with only one of the two domains, whereas others interact with both, but in different cells and at separate times," explains Guillaume Andrey.

The wrist emerges from a no man's land

During the growth of the limb bud, certain Hoxd genes will shift toward the opposite regulatory domain to establish new contacts. This swing from one domain to the other is the equivalent of a genetic switch, signaling the transition between the creation of the arm and the hand. However, there is an intermediary cellular territory that escapes the two regulatory controls and in which the switch is not activated: this zone will generate the wrist. Thus, the articulation of activities between domains A and B enables the appearance of a morphological articulation between our arms and our hands. "The three-dimensional organization of these two regulatory domains, which gives them physical and functional independence, plays an essential role in stimulating the Hoxd genes. These experiments allowed us to demonstrate that there is an additional, topological level of information to modulate gene expression. This is a first!"' says Guillaume Andrey.


Story Source:

The above story is based on materials provided by Université de Genève. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. Andrey, T. Montavon, B. Mascrez, F. Gonzalez, D. Noordermeer, M. Leleu, D. Trono, F. Spitz, D. Duboule. A Switch Between Topological Domains Underlies HoxD Genes Collinearity in Mouse Limbs. Science, 2013; 340 (6137): 1234167 DOI: 10.1126/science.1234167

Cite This Page:

Université de Genève. "The swing of architect genes." ScienceDaily. ScienceDaily, 6 June 2013. <www.sciencedaily.com/releases/2013/06/130606154704.htm>.
Université de Genève. (2013, June 6). The swing of architect genes. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2013/06/130606154704.htm
Université de Genève. "The swing of architect genes." ScienceDaily. www.sciencedaily.com/releases/2013/06/130606154704.htm (accessed August 23, 2014).

Share This




More Health & Medicine News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) — Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) — Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) — It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins