Featured Research

from universities, journals, and other organizations

X chromosomes: Undoing a hairpin doubles gene activity

Date:
July 29, 2013
Source:
Ludwig-Maximilians-Universitaet Muenchen (LMU)
Summary:
Male fruit flies have one X chromosome per cell, females have two. So genes on the male X must work twice as hard to produce the same amount of protein as its female counterparts. Scientists have found a new switch involved in making this possible.

Genes on the single X chromosome in males (green) are twice as active as those on each of the two X chromosomes in females. The immunofluorescence image shows giant polytene chromosomes from the salivary glands of a male Drosophila larva, stained to reveal chromosomal DNA (blue) and a protein component of the dosage compensation complex on the X chromosome (green).
Credit: Image courtesy of Ludwig-Maximilians-Universitaet Muenchen (LMU)

Male fruit flies have one X chromosome per cell, females have two. So genes on the male X must work twice as hard to produce the same amount of protein as its female counterparts. A team of researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich has found a new switch involved in making this possible.

In the fruit fly Drosophila -- as in humans -- the sexes have different sets of chromosomes. While females have two X chromosomes in their somatic cells, males have one X and one copy of the much smaller Y. The latter determines maleness but carries very few genes, while the X chromosome has thousands of genes. Many of these encode essential proteins that must be made in equal amounts in both sexes, and males that fail to meet this requirement are inviable.

The males make up for the difference in X chromosome copy number by ensuring that each gene on their X chromosome is expressed at twice the rate of its equivalent on a female X, a phenomenon known as dosage compensation. The so-called Dosage Compensation Complex (DCC) is responsible for distinguishing the X chromosome from the others in males and doubling the level of activity of most of the genes it contains. The DCC is a complicated molecular machine which, in addition to so-called MSL proteins, contains two long RNA molecules (referred to as roX RNAs). "Correct incorporation of roX RNAs is known to be essential for DCC function, but how this is accomplished has been unclear," says LMU biologist Professor Peter Becker, who studies how the operation of the DCC is regulated.

Switching to the binding mode

Members of his team have now discovered that a change in the structural conformation of the roX RNAs is a prerequisite for the functional activation of DCC. These RNAs all contain a characteristic hairpin structure, which is conserved in various fly species. "We have long supposed that such a widely conserved structure must be of functional significance, but we were unable to demonstrate a specific binding interaction between the hairpin and the MSL protein components of the DCC," Becker explains.

The reason for this is revealed in the new study. It turns out that the hairpin structure actually prevents protein binding. The hairpin must first be unwound by a specific enzyme before the MSL proteins can bind to the RNAs and a functional DCC is formed. The closed hairpin conformation is equivalent to a switch fixed in the OFF position. Unwinding of the hairpin flips the switch to ON, thus permitting assembly of the active DCC. "We believe that this switch is only activated under conditions that are found at certain sites on the X chromosome. This would ensure that dosage compensation is restricted to genes on the X," says Becker.

The researchers now assume that long RNAs play a much more active role in other regulatory complexes than has been suspected hitherto. Up to now, these RNAs have been seen as passive scaffolds for the binding of proteins. "We think though that they modulate the activity of the proteins they associate with. And we have now shown this for the DCC," Becker says. He will continue to work in this field. "Now it's getting really exciting," he says.

The study was supported by grants from the German Research Foundation (DFG) to the Collaborative Research Center Transregio 5, and by an EU-funded ERC Advanced Grant for the project "Assembly and maintenance of a co-regulated chromosomal compartment" (ACCOMPLI).


Story Source:

The above story is based on materials provided by Ludwig-Maximilians-Universitaet Muenchen (LMU). Note: Materials may be edited for content and length.


Journal Reference:

  1. Anton Wutz. Noncoding roX RNA Remodeling Triggers Fly Dosage Compensation Complex Assembly. Molecular Cell, 2013; 51 (2): 131 DOI: 10.1016/j.molcel.2013.07.007

Cite This Page:

Ludwig-Maximilians-Universitaet Muenchen (LMU). "X chromosomes: Undoing a hairpin doubles gene activity." ScienceDaily. ScienceDaily, 29 July 2013. <www.sciencedaily.com/releases/2013/07/130729133030.htm>.
Ludwig-Maximilians-Universitaet Muenchen (LMU). (2013, July 29). X chromosomes: Undoing a hairpin doubles gene activity. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2013/07/130729133030.htm
Ludwig-Maximilians-Universitaet Muenchen (LMU). "X chromosomes: Undoing a hairpin doubles gene activity." ScienceDaily. www.sciencedaily.com/releases/2013/07/130729133030.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins