Featured Research

from universities, journals, and other organizations

New highly efficient molecular probe for real-time PCR monitoring and genetic testing

Date:
August 7, 2013
Source:
RIKEN
Summary:
A highly efficient and reliable fluorescent probe for PCR DNA amplification techniques and DNA analysis in hybridization experiments has been developed. This technology will enable the development of new, advanced assays for DNA-based genetic testing and help to bring the benefits of genome-wide sequencing studies to patients in the clinic.

Eprobe®, a highly efficient and reliable fluorescent probe for PCR DNA amplification techniques and DNA analysis in hybridization experiments, has been developed by researchers from RIKEN and Japanese firm K.K.DNAFORM. This technology will enable the development of new, advanced assays for DNA-based genetic testing and help to bring the benefits of genome-wide sequencing studies to patients in the clinic.

Related Articles


Takeshi Hanami, Diane Delobel and colleagues from the RIKEN Center for Life Science Technologies, the RIKEN Preventive Medicine & Diagnosis Innovation Program, and K.K.DNAFORM report on the development of the new molecular probe today in the journal PLOS ONE.

PCR, for Polymerase Chain Reaction, is a simple and inexpensive DNA amplification technique, widely used to analyse DNA and RNA in life science laboratories. PCR is further applied in hospitals to diagnose diseases, identify bacteria and viruses, or in forensic medicine. During PCR, small amounts of target DNA molecules are copied and rapidly amplified, thus enabling researchers to analyze the DNA, test it or clone it.

Eprobes are short DNA oligonucleotides labeled with two fluorescent dye moieties attached to the same nucleotide. During the DNA amplification reaction, the probes bind to the newly synthesized DNA fragments, emitting a strong fluorescence signal upon binding, which enables researchers to monitor the reaction in real-time. In the study, the researchers used Eprobes for the detection of genetic variations in the human EGFR and KRAS tumor genes by combining real-time PCR with a hybridization technique. They show that Eprobes provide decisive advantages over commonly used hybridization probes because of their unique background signal reduction, enhanced DNA-binding affinity and very low false positives rate.

"Eprobe® enables real-time PCR methods, which are gaining importance for medical diagnostics and many life science applications, because they can provide quantitative results and increased reliability as compared to standard PCR methods," explains Kengo Usui, the leader of the Genetic Diagnosis Technology Unit at RIKEN Center for Life Science Technologies.

"This new technology will enable the development of advanced assay formats for the simultaneous detection of multiple target genes, as needed for example in the diagnosis of tumors" explains Takeshi Hanami, first author of the paper.

"We are very excited about the potential of the new Eprobes," comments Matthias Harbers, Visiting Scientist to the Division of Genomic Technologies at the RIKEN Center for Life Science Technologies and supervisor of the Eprobe development project. "In the reactions, Eprobes acted like sequence-specific fluorescent dyes, which gives them great potential for use as hybridization probes not only in PCR and melting curve analysis but also in other important applications like for instance in Fluorescent in situ Hybridization or FISH."


Story Source:

The above story is based on materials provided by RIKEN. Note: Materials may be edited for content and length.


Journal Reference:

  1. Takeshi Hanami, Diane Delobel, Hajime Kanamori, Yuki Tanaka, Yasumasa Kimura, Ayako Nakasone, Takahiro Soma, Yoshihide Hayashizaki, Kengo Usui, Matthias Harbers. Eprobe Mediated Real-Time PCR Monitoring and Melting Curve Analysis. PLoS ONE, 2013; 8 (8): e70942 DOI: 10.1371/journal.pone.0070942

Cite This Page:

RIKEN. "New highly efficient molecular probe for real-time PCR monitoring and genetic testing." ScienceDaily. ScienceDaily, 7 August 2013. <www.sciencedaily.com/releases/2013/08/130807204704.htm>.
RIKEN. (2013, August 7). New highly efficient molecular probe for real-time PCR monitoring and genetic testing. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/08/130807204704.htm
RIKEN. "New highly efficient molecular probe for real-time PCR monitoring and genetic testing." ScienceDaily. www.sciencedaily.com/releases/2013/08/130807204704.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) — Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) — Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins