Featured Research

from universities, journals, and other organizations

Scientists watch live brain cell circuits spark and fire

Date:
August 8, 2013
Source:
NIH/National Institute of Neurological Disorders and Stroke
Summary:
Scientists used fruit flies to show for the first time that a new class of genetically engineered proteins can be used to watch nerve cell electrical activity in live brains. These proteins may be a promising new tool for mapping brain cell activity in multiple animals and for studying how neurological disorders disrupt normal nerve cell signaling.

The Electric Fly Brain Comes Alive. Scientists used a new protein, called ArcLight, to watch nerve cell electricity in a live fly brain.
Credit: Courtesy of Nitabach Lab, Yale School of Medicine, New Haven, CT

Scientists used fruit flies to show for the first time that a new class of genetically engineered proteins can be used to watch electrical activity in individual brain cells in live brains. The results, published in Cell, suggest these proteins may be a promising new tool for mapping brain cell activity in multiple animals and for studying how neurological disorders disrupt normal nerve cell signaling. Understanding brain cell activity is a high priority of the President's Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative.

Brain cells use electricity to control thoughts, movements and senses. Ever since the late nineteenth century, when Dr. Luigi Galvani induced frog legs to move with electric shocks, scientists have been trying to watch nerve cell electricity to understand how it is involved in these actions. Usually they directly mo nitor electricity with cumbersome electrodes or toxic voltage-sensitive dyes, or indirectly with calcium detectors. This study, led by Michael Nitabach, Ph.D., J.D., and Vincent Pieribone, Ph.D., at the Yale School of Medicine, New Haven, CT, shows that a class of proteins, called genetically encoded fluorescent voltage indicators (GEVIs), may allow researchers to watch nerve cell electricity in a live animal.

Dr. Pieribone and his colleagues helped develop ArcLight, the protein used in this study. ArcLight fluoresces, or glows, as a nerve cell's voltage changes and enables researchers to watch, in real time, the cell's electrical activity. In this study, Dr. Nitabach and his colleagues engineered fruit flies to express ArcLight in brain cells that control the fly's sleeping cycle or sense of smell. Initial experiments in which the researchers simultaneously watched brain cell electricity with a microscope and recorded voltage with electrodes showed that ArcLight can accurately monitor electricity in a living brain. Further experiments showed that ArcLight illuminated electricity in parts of the brain that were previously inaccessible using other techniques. Finally, ArcLight allowed the researchers to watch brain cells spark and fire while the flies were awakening and smelling. These results suggest that in the future neuroscientists may be able to use ArcLight and similar GEVIs in a variety of ways to map brain cell circuit activity during normal and disease states.

This study was supported by grants from NINDS (NS055035, NS056443, NS083875, NS057631, NS083875) and NIGMS (GM098931).

GEVIs and other sensors are being developed by a group of NINDS-funded researchers who are part of the Fluorogenetic Voltage Sensors Consortium. The consortium was partly funded with grants from the American Recovery and Reinvestment Act.

For more information go to: http://www.fluorogenetic-voltage-sensors.org/

Video: http://www.youtube.com/watch?v=BZvOg2_to7Q&feature=player_embedded


Story Source:

The above story is based on materials provided by NIH/National Institute of Neurological Disorders and Stroke. Note: Materials may be edited for content and length.


Journal Reference:

  1. Guan Cao, Jelena Platisa, VincentA. Pieribone, Davide Raccuglia, Michael Kunst, MichaelN. Nitabach. Genetically Targeted Optical Electrophysiology in Intact Neural Circuits. Cell, 2013; DOI: 10.1016/j.cell.2013.07.027

Cite This Page:

NIH/National Institute of Neurological Disorders and Stroke. "Scientists watch live brain cell circuits spark and fire." ScienceDaily. ScienceDaily, 8 August 2013. <www.sciencedaily.com/releases/2013/08/130808124044.htm>.
NIH/National Institute of Neurological Disorders and Stroke. (2013, August 8). Scientists watch live brain cell circuits spark and fire. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/08/130808124044.htm
NIH/National Institute of Neurological Disorders and Stroke. "Scientists watch live brain cell circuits spark and fire." ScienceDaily. www.sciencedaily.com/releases/2013/08/130808124044.htm (accessed July 28, 2014).

Share This




More Mind & Brain News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com
University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com
Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins