Featured Research

from universities, journals, and other organizations

Muscle health depends on sugar superstructure

Date:
August 8, 2013
Source:
University of Iowa Health Care
Summary:
Scientists have pinpointed not just one, but three proteins that are required for constructing a key, early section of a critical sugar chain. Mutations affecting any one of these three proteins can cause congenital muscular dystrophies in humans.

The diagram shows the structure of a critical portion of the glycan that controls the function of the dystroglycan (DG) protein. Without this sugar modification DG does not function properly, and glitches in the construction of the glycan cause the progressive muscle dysfunction and the brain abnormalities that characterize many forms of muscular dystrophy. In a new study published online Aug. 8 in Science, a University of Iowa team has pinpointed not just one, but three enzymes that are required for constructing a key, early section of the glycan. Three enzymes act sequentially to build this section of the DG glycan. The starting point is a mannose sugar (Man) attached to the DG protein. Enzyme 1 in the diagram (called GTDC2) links a glucosamine (GlcN) sugar to this starting mannose. Enzyme 2 (B3GALNT2) then adds a galactosamine sugar (GalN) to the GlcN. Only when this disaccharide is complete can Enzyme 3 -- an unusual type of kinase called SGK196 -- add a phosphate group (P) to the mannose at the beginning of the chain. Earlier work from the UI lab has shown that this phosphate link is required for other enzymes to build the final section of the glycan -- the part that actually allows DG to function.
Credit: University of Iowa

For many inherited diseases, such as cystic fibrosis or Huntington disease, the disease-causing genetic mutation damages or removes a protein that has an essential role in the body. This protein defect is the root cause of the disease symptoms.

However, for a group of muscular dystrophies known collectively as congenital muscular dystrophies (CMDs), the sequence of the protein that is central to normal function is typically unaffected. Instead, the defects lie in processing proteins -- ones that are responsible for modifying the central protein by adding sugar chains (glycans). Either loss of the glycans or disruption of their structure is sufficient to cause muscle disease.

In a new study, published online Aug. 8 in the journal Science, a University of Iowa team led by Kevin Campbell, Ph.D., has pinpointed not just one, but three proteins that are required for constructing a key, early section of a critical sugar chain. Mutations affecting any one of these three proteins can cause CMD disease in humans.

The central protein in CMDs is dystroglycan (DG). "It looks like at least 10 to 15 genes encode proteins that contribute to the glycan superstructure that makes DG effective," says Campbell, professor and head of molecular physiology and biophysics at the UI Carver College of Medicine, and a Howard Hughes Medical Institute investigator. "Our goal is to figure out the whole pathway by which the glycan structure is built, since defects in any of the proteins can potentially lead to disease. Knowing which genes are involved is expected to help us develop clinical tests for these dystrophies, and also ways to screen for potential therapeutic agents."

Normally, DG is modified with a unique sugar chain that acts like glue, allowing DG to attach to other proteins and, by doing so, to reinforce cell membranes in many tissues -- including muscle and brain. DG does not function properly without this sugar modification, and glitches in the construction of the glycan cause the progressive muscle dysfunction and the brain abnormalities that characterize many forms of muscular dystrophy.

Almost a dozen genetic mutations are now known to cause DG-related CMDs, which include Fukuyama Congenital Muscular Dystrophy, Walker-Warburg Syndrome, Muscle-Eye-Brain disease, and certain types of limb-girdle muscular dystrophy. All of these mutations affect proteins (enzymes) that are responsible for building DG's unique sugar chain.

The new study assigns a role to three of these causative mutations, showing that the three affected enzymes act sequentially to build an early section of DG's critical glycan. When any of these proteins are mutated, the sugar chain is not constructed correctly and the DG protein loses its function. The first author of the study was Takako Yoshida-Moriguchi, Ph.D., a UI research assistant professor in Campbell's lab

The three enzymes connect a series of sugars together to form the glycan; like stringing beads together to make a necklace. The starting point of the chain is a mannose sugar, which is attached to the backbone of the DG protein. The first enzyme analyzed in the study, called GTDC2, links a glucosamine (GlcNAc) sugar to this starting mannose. The second enzyme, B3GALNT2, then adds a galactosamine sugar to the GlcNAc. Only when this disaccharide is complete can a third enzyme -- an unusual type of kinase called SGK196 -- add a phosphate group to the mannose at the beginning of the chain.

Earlier work from Campbell's lab has shown that this phosphate link is required for other enzymes to build the final section of the sugar chain -- the part that actually allows dystroglycan to do its job.

"What I find really exciting is that even with the whole genome having been described, we are still finding novel enzymes that carry out functions we didn't know about even two or three years ago," Campbell says.

Identifying these enzymes and understanding their functions may eventually provide leads for developing therapies to treat CMD and other muscle diseases, Campbell adds.


Story Source:

The above story is based on materials provided by University of Iowa Health Care. Note: Materials may be edited for content and length.


Journal Reference:

  1. Takako Yoshida-Moriguchi, Tobias Willer, Mary E. Anderson, David Venzke, Tamieka Whyte, Francesco Muntoni, Hane Lee, Stanley F Nelson, Liping Yu, and Kevin P. Campbell. SGK196 Is a Glycosylation-Specific O-Mannose Kinase Required for Dystroglycan Function. Science, 8 August 2013 DOI: 10.1126/science.1239951

Cite This Page:

University of Iowa Health Care. "Muscle health depends on sugar superstructure." ScienceDaily. ScienceDaily, 8 August 2013. <www.sciencedaily.com/releases/2013/08/130808142134.htm>.
University of Iowa Health Care. (2013, August 8). Muscle health depends on sugar superstructure. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2013/08/130808142134.htm
University of Iowa Health Care. "Muscle health depends on sugar superstructure." ScienceDaily. www.sciencedaily.com/releases/2013/08/130808142134.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins