Featured Research

from universities, journals, and other organizations

'Mistake' in single-cell organism actually a rewrite essential to life

Date:
October 3, 2013
Source:
Ohio State University
Summary:
A tiny but unexpected change to a segment of RNA in a single-cell organism looks a lot like a mistake, but is instead a change to the genetic information that is essential to the organism’s survival.

A tiny but unexpected change to a segment of RNA in a single-cell organism looks a lot like a mistake, but is instead a change to the genetic information that is essential to the organism's survival.

Related Articles


Scientists have discovered this RNA "edit" in Trypanosoma brucei, a parasite that causes sleeping sickness in Africa and Chagas disease in Latin America. Though the organism is a model system for this work, the finding could lead to a new drug target to fight the parasite if higher species don't share this genetic behavior.

Some of the organism's genetic activity was already known. In the case of gene products called tRNAs, which help assemble the amino acids that make proteins, T. brucei was known to have only one tRNA with a specific segment of RNA that ensures the tRNA's proper function. Additionally, examples of RNA editing have been discovered before.

But in this case, the way genetic information necessary for the protein production process was changed -- through a swap of three nucleotides for three others that are completely out of place -- has never been seen before.

"These are changes for which no chemistry is known and has never been described. We don't know what enzyme is involved and that is the million-dollar question: What mechanism is doing this? We haven't a clue," said Juan Alfonzo, professor of microbiology at The Ohio State University and senior author of the study.

"If the activity is unique to a trypanosome, then you have a good drug target. If it is widespread, then you have to reconsider one more time what coding sequences really mean in the sense that you can indeed change them in a very programmed fashion by activities that don't exist -- that have not been described," said Alfonzo, also an investigator in Ohio State's Center for RNA Biology.

The work is the result of Alfonzo's longtime collaboration with co-lead author Christopher Trotta, senior director of biology at PTC Therapeutics in South Plainfield, N.J.

The study appears online in the journal Molecular Cell and is scheduled for print publication on Oct. 24.

The finding was not only unexpected, but serendipitous. Alfonzo's lab was analyzing an enzyme affecting T. brucei's tRNA behavior in response to a request from Trotta, a drug developer who is considered a pioneer of research on tRNAs. To begin the analysis, Alfonzo sought to identify the intron, a specific segment of RNA, that needs to be removed before the tRNA can participate in the selection of the right amino acids during protein production.

This critical function of removing the intron is called splicing -- in essence, a pre-requisite chemical reaction affirming that tRNA can deliver the correct instructions for protein production. If a tRNA is not spliced, it will not work in protein production and the cell will die.

The trouble was, Alfonzo couldn't locate the intron that he knew was there. After multiple attempts, he found that the intron's sequence in this organism changed after transcription, the point at which a copy of RNA is made from a DNA sequence as the first step of gene expression.

This edit -- hard to find because of its odd nature -- consisted of a change to three nucleotides, the molecules that form DNA and RNA. Because of its rarity and unusual nature, it is called a noncanonical edit.

"It's noncanonical because it is not typical. It is completely not typical," Alfonzo said. "And for the first time, we show the biological significance. We show that if you don't edit, you don't splice. This editing is required for splicing, and splicing is required for functionality. Otherwise, cells die."

Previously known methods of RNA editing include deamination, the removal of sections of molecules from the RNA that change the message from the DNA, and nucleotide insertion, deletion or exchange. The editing described here is a swap of three nucleotides for three others that, according to the rules of biology, do not belong where they end up. This is why it looks like a mistake.

Colleagues have suggested that this edit should have been identified by researchers who do deep sequencing, which involves repeated readings of all nucleotides within an RNA molecule, Alfonzo noted. But he is not surprised that technology didn't yield these results.

"In massive sequencing, you match RNAs to the sequence in the genome. Any mismatch is called a sequence mistake and is thrown in the trash. So this noncanonical editing may well be in the trash bin of many of these deep sequencing researchers," he said.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mary Anne T. Rubio, Zdeněk Paris, Kirk W. Gaston, Ian M.C. Fleming, Paul Sample, Christopher R. Trotta, Juan D. Alfonzo. Unusual Noncanonical Intron Editing Is Important for tRNA Splicing in Trypanosoma brucei. Molecular Cell, 2013; DOI: 10.1016/j.molcel.2013.08.042

Cite This Page:

Ohio State University. "'Mistake' in single-cell organism actually a rewrite essential to life." ScienceDaily. ScienceDaily, 3 October 2013. <www.sciencedaily.com/releases/2013/10/131003121153.htm>.
Ohio State University. (2013, October 3). 'Mistake' in single-cell organism actually a rewrite essential to life. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/10/131003121153.htm
Ohio State University. "'Mistake' in single-cell organism actually a rewrite essential to life." ScienceDaily. www.sciencedaily.com/releases/2013/10/131003121153.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins