Featured Research

from universities, journals, and other organizations

Pushing and shoving – a cost factor in protein synthesis

Date:
October 15, 2013
Source:
Max Planck Institute of Colloids and Interfaces
Summary:
When cells grow and proliferate, they need to produce large amounts of protein. All this protein is made by ribosomes, therefore rapid growth requires many ribosomes. Because ribosomes are expensive machines for the cell, the cell needs to use them efficiently. In a new study, a team of researchers investigates how the bacterium Escherichia coli solves this problem and shows that its economic strategy for using ribosomes is close to optimal.

The interior of a cell is crowded. Ternary complexes (red-blue) must find their way to the ribosome (green) to deliver an amino acid (white). The random walk through the crowded environment constitutes a limitation to the speed at which protein is synthesized in a cell.
Credit: Max Planck Institute

When cells grow and proliferate, they need to produce large amounts of protein. All this protein is made by ribosomes, therefore rapid growth requires many ribosomes. Because ribosomes are expensive machines for the cell, the cell needs to use them efficiently. In a new study, published in PNAS, a team of researchers from the MPI of Colloids and Interfaces in Potsdam and from universities in Canada, Denmark and the United States investigates how the bacterium Escherichia coli solves this problem and shows that its economic strategy for using ribosomes is close to optimal. This strategy couples increases in the ribosome content of a cell to increase in the speed at which they work: Whenever the cell makes more ribosomes, it also makes them work faster? In addition, the study identified the slow diffusion in the cell as limitation for the speed of ribosomes and as a source for making speed increases costly.

Related Articles


When a company grows, it needs to invest into machines for making larger amounts of its product. The same is true for cells that grow and proliferate. They need to invest their resources into machines such as ribosomes to make protein, and eventually a new cell. In doing so they have to make economic decisions, for example whether it is better to have fewer ribosomes that work faster or more ribosomes that work more slowly. The cell could either put its resources into making many ribosomes or into making them fast. The new study investigates which strategy is used by systematically comparing a theoretical model for proteomic resource allocation with experimental data from Escherichia coli bacteria growing with different nutrient sources and therefore with different growth rates.

The bacteria, it turns out, use a combination of the two strategies: when growth of a cell speeds up, both ribosome content and the speed at which these ribosomes work are increased (but neither as much as it could be if all resources were put into it alone). Is this the best investment strategy that the cell can make? "In our model, it is not optimal but very close," says Stefan Klumpp, group leader at the MPI of Colloids and Interfaces and lead author of the study, "and it is a very simple strategy, so improving it further may come with additional costs."

Why is it expensive to make the ribosomes faster? Proteins are chains of different amino acids that are put together in the correct order by the ribosomes. For that the amino acids have to be delivered to the ribosome, which is done by so-called ternary complexes. To make the ribosome work faster, this delivery needs to be faster, but increasing the speed of that delivery faces a physical limit: The interior of a cell is quite crowded with proteins and other molecules, and therefore the big ternary complexes are slow to get through. The only way to make them arrive faster is to have lots of them, so one of them may get to the ribosome in time. Making more ternary complexes in turn requires more ribosomes to make them.

Bacterial ribosomes are the target of many antibiotics, and the study provides a theoretical foundation for understanding the reaction of the cells to these antibiotics. For example, the cells typically compensate the reduced ribosome function partly by making more ribosomes. Similar economic constraints are expected to apply to all kinds of cells, as long as they are rapidly growing and proliferating, so the results may in the future also be applied to higher organisms, in particular cancer cells.


Story Source:

The above story is based on materials provided by Max Planck Institute of Colloids and Interfaces. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Klumpp, M. Scott, S. Pedersen, T. Hwa. Molecular crowding limits translation and cell growth. Proceedings of the National Academy of Sciences, 2013; 110 (42): 16754 DOI: 10.1073/pnas.1310377110

Cite This Page:

Max Planck Institute of Colloids and Interfaces. "Pushing and shoving – a cost factor in protein synthesis." ScienceDaily. ScienceDaily, 15 October 2013. <www.sciencedaily.com/releases/2013/10/131015094046.htm>.
Max Planck Institute of Colloids and Interfaces. (2013, October 15). Pushing and shoving – a cost factor in protein synthesis. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2013/10/131015094046.htm
Max Planck Institute of Colloids and Interfaces. "Pushing and shoving – a cost factor in protein synthesis." ScienceDaily. www.sciencedaily.com/releases/2013/10/131015094046.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins