Featured Research

from universities, journals, and other organizations

Just ask the animals: Fishers with GPS sensors show animal movements

Date:
October 16, 2013
Source:
Max-Planck-Gesellschaft
Summary:
Many animals are adapting to human encroachment of their natural habitats. Carnivores in particular require territories of sufficient size and so are often forced to move between numerous small habitat patches. To date, scientists often use mathematical models to predict these important routes, but fishers fitted with GPS sensors are now showing that their calculations may be missing the mark if they ignore animal behavior.

Using GPS transmitters and cameras, Scott LaPoint documented the movements of fishers. These once shy animals have begun colonizing urban areas.
Credit: Roland Kays, NC State University

Many animals are adapting to human encroachment of their natural habitats. Carnivores in particular require territories of sufficient size and so are often forced to move between numerous small habitat patches. To date, scientists often use mathematical models to predict these important routes, but fishers fitted with GPS sensors are now showing that their calculations may be missing the mark if they ignore animal behaviour.

Corridors are spaces that receive too little attention and yet are vitally important. How else would we get from the bedroom to the bath or from the couch to the kitchen? Without the hallway in between, we would starve on the sofa, unable to reach our food. In the wild the areas that connect animals' living spaces are known as corridors. It is vital for the conservation of many species that animals can move freely and safely from their hunting grounds to their mating areas, for example. If a new road is built through the middle of an important corridor, it may put an entire population at risk.

In general, calculations predict which routes the animals will use. Working with colleagues from the USA, Martin Wikelski and his doctoral student Scott LaPoint from the Max Planck Institute for Ornithology in Radolfzell and the University of Konstanz have let the animals define their own routes. They fitted fishers (mammals of the marten family) with GPS sensors and then observed their movements over the course of three winters near the city of Albany in the US state of New York. In doing so, they discovered that the fishers selected completely different routes from those predicted by the models.

"I was really astonished at how bad the models were," says Wikelski, who heads the Department of Migration and Immunoecology at Radolfzell. The two mathematical models together managed to correctly predict only 5 out of 23 corridors. The "Least-Cost Path Analysis" model, with only one correct prediction, fared worse than the "Circuit Theory" model, which at least managed five hits.

The equations mainly use information about the habitat preferences of the animals. Since fishers spend most of their time within forests and avoid open spaces, it was assumed that this rule would also apply to their corridors. "That assumption was not true, as the animals were much more flexible in their willingness to use corridors composed of a variety of habitat types, not just forests," notes Scott LaPoint. They scampered through alluvial and deciduous woods, over meadows, fields and even human-made landscapes such as golf courses and cemeteries, to get from one place to another.

They didn't even draw the line at crossing streets. However, instead of exposing themselves to the dangers of trying to cross over six-lane motorways, the clever creatures instead passed beneath the motorways through old drainage pipes. "I would never have thought it, because with all we know about these shy animals, it didn't seem possible that they would use such potentially dangerous structures" says an amazed Martin Wikelski.

Landscape planners and environmentalists are interested in wildlife corridors because they are considered worthy of special protection. Corridors facilitate a healthy spread of the animals, maintain gene flow between populations, and thereby reduce the risk of extinction. They can also be very expensive, so it is important that our corridor model predictions are accurate and that we make sure that animals are indeed using them. "To do so we should ask the animals what they need," explains Wikelski, "and by monitoring their movements, in effect we have actually created a way for the animals to communicate with us humans.

Scott LaPoint and Martin Wikelski's work suggests we should just ask the animal: "What do you think? What do you want?" This could make landscape planning simpler and more transparent, and we could even learn something along the way.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Scott LaPoint, Paul Gallery, Martin Wikelski, Roland Kays. Animal behavior, cost-based corridor models, and real corridors. Landscape Ecology, 2013; 28 (8): 1615 DOI: 10.1007/s10980-013-9910-0

Cite This Page:

Max-Planck-Gesellschaft. "Just ask the animals: Fishers with GPS sensors show animal movements." ScienceDaily. ScienceDaily, 16 October 2013. <www.sciencedaily.com/releases/2013/10/131016112611.htm>.
Max-Planck-Gesellschaft. (2013, October 16). Just ask the animals: Fishers with GPS sensors show animal movements. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2013/10/131016112611.htm
Max-Planck-Gesellschaft. "Just ask the animals: Fishers with GPS sensors show animal movements." ScienceDaily. www.sciencedaily.com/releases/2013/10/131016112611.htm (accessed April 21, 2014).

Share This



More Plants & Animals News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Newsy (Apr. 20, 2014) A 9-year-old Michigan boy was exploring a creek when he came across a 10,000-year-old tooth from a prehistoric mastodon. Video provided by Newsy
Powered by NewsLook.com
Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins