Featured Research

from universities, journals, and other organizations

Genetically modified bacteria became efficient sugar producers

Date:
October 17, 2013
Source:
Aalto University
Summary:
The production of rare sugars has been very costly until now. A recent study indicates that their production can be made significantly more efficient with the help of genetically modified bacteria. This reduces prices and allows for their more versatile use in medicine, the study suggests.

The production of rare sugars has been very costly until now. A recent doctoral study indicates that their production can be made significantly more efficient with the help of genetically modified bacteria. This reduces prices and allows for their more versatile use in medicine, for example, says doctoral candidate Anne Usvalampi from the Aalto University in Finland.

Related Articles


Industry is already making use of rare sugars as low-calorie sweeteners, and as precursors of anti-cancer and antiviral medicines. However, their high cost has impeded research and use: it is not possible to isolate significant amounts of rare sugars directly from nature, and consequently their production has been expensive.

The efficiency of sugar production can be increased through gene technology. In her recent doctoral dissertation Anne Usvalampi, Lic.Sc. (Tech.), studied the microbial production of three rare sugars -- xylitol, l-xylulose and l-xylose with the help of genetically modified bacteria.

"We added certain genes to the bacteria, making them produce the enzymes that we wanted, and with their help, the desired rare sugars. The results were promising. The production of xylitol was considerably more efficient than what has previously been achieved by using bacteria, and L-xylose was manufactured for the first time without large amounts of by-products. Compared with chemical synthesis, bacteria proved to be significantly better in the production of l-xylulose and l-xylose," Anne Usvalampi says.

Genetic engineering has taken great strides in the past decade, but it is still not simple.

"On paper the process looks good: the DNA is isolated and the desired gene is replicated and attached to a vector which is used to transform bacteria. It sounds straightforward, but things do not always go like one would expect," she admits.

Sugar for wounds

As a precursor Usvalampi and her group used d-xylose, which is a part of hemicellulose, which can be extracted from hardwoods. It was used for the manufacture of xylitol with the help of Lactococcus lactis, to which the xylose reductase gene of Pichia stipitis was spliced. Next, xylitol was used to produce l-xylulose with Escherichia coli, to which the xylitol-4-dehydrogenase of Pantoea ananatis was added. Finally, l-xylulose was used to produce l-xylose with the help of E. coli, in which the l-fucose isomerase gene from the bacterium had been overexpressed.

So is it true that xylitol, which is familiar to all Finns, does not come directly from birch?

"It does not," Anne Usvalampi notes with a smile.

"The idea, nurtured in Finland, of xylitol as birch sugar is incorrect. The precursor d-xylose can be extracted from birch, but it can come from other hardwoods, and also from maize, for instance."

Xylitol is known for its preventive effect against caries, but new studies indicate that it is also useful in preventing ear infections in children. Anne Usvalampi believes that plenty of new uses can be found for rare sugars, especially in the pharmaceutical industry, once their prices can be brought down thanks to new and more efficient methods of production. Already now there is evidence that the rare sugar mannose can be used in the treatment of various infections and wounds.


Story Source:

The above story is based on materials provided by Aalto University. Note: Materials may be edited for content and length.


Cite This Page:

Aalto University. "Genetically modified bacteria became efficient sugar producers." ScienceDaily. ScienceDaily, 17 October 2013. <www.sciencedaily.com/releases/2013/10/131017080348.htm>.
Aalto University. (2013, October 17). Genetically modified bacteria became efficient sugar producers. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2013/10/131017080348.htm
Aalto University. "Genetically modified bacteria became efficient sugar producers." ScienceDaily. www.sciencedaily.com/releases/2013/10/131017080348.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins