Featured Research

from universities, journals, and other organizations

Evolution of new species requires few genetic changes

Date:
October 31, 2013
Source:
University of Chicago Medical Center
Summary:
Only a few genetic changes are needed to spur the evolution of new species—even if the original populations are still in contact and exchanging genes. Once started, however, evolutionary divergence evolves rapidly, ultimately leading to fully genetically isolated species, report scientists.

This is a top down view of Heliconius cydno and H. pachinus butterflies.
Credit: University of Chicago, Marcus Kronforst

Only a few genetic changes are needed to spur the evolution of new species -- even if the original populations are still in contact and exchanging genes. Once started, however, evolutionary divergence evolves rapidly, ultimately leading to fully genetically isolated species, report scientists from the University of Chicago in the Oct 31 Cell Reports.

"Speciation is one of the most fundamental evolutionary processes, but there are still aspects that we do not fully understand, such as how the genome changes as one species splits into two," said Marcus Kronforst, Ph.D., Neubauer Family assistant professor of ecology and evolution, and lead author of the study.

To reveal genetic differences critical for speciation, Kronforst and his team analyzed the genomes of two closely related butterfly species, Heliconius cydno and H. pachinus, which only recently diverged. Occupying similar ecological habitats and able to interbreed, these butterfly species still undergo a small amount of genetic exchange.

The researchers found that this regular gene flow mutes genetic variants unimportant to speciation -- allowing them to identify key genetic areas affected by natural selection. The butterfly species, they discovered, differed in only 12 small regions of their genomes, while remaining mostly identical throughout the rest. Eight of these coded for wing color patterning, a trait important for mating and avoiding predation, and under intense selection pressure, while the other four remain undescribed.

"These 12 spots appear to only function well in the environment their species occupies, and so are prevented from moving between gene pools, even though other parts of the genomes are swapped back and forth," Kronforst said.

The team also compared the genomes of these two groups to a third species, still closely related but further removed on an evolutionary time scale. Here, they found hundreds of genomic changes, indicating that the rate of genetic divergence accelerated rapidly after the initial changes took hold.

"Our work suggests that a few advantageous mutations are enough to cause a 'tug-of-war' between natural selection and gene flow, which can lead to rapidly diverging genomes," Kronforst said.

Kronforst and his team plan to characterize the remaining four divergent genome areas to look for functions important to speciation. They also are studying why species more commonly arise in tropical areas.

"It is possible that this type of speciation, in which natural selection pushes populations apart, has been important in the evolution of other organisms. It remains to be seen whether it is a common process though," Kronforst said.


Story Source:

The above story is based on materials provided by University of Chicago Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marcus R. Kronforst, Matthew E.B. Hansen, Nicholas G. Crawford, Jason R. Gallant, Wei Zhang, Rob J. Kulathinal, Durrell D. Kapan, Sean P. Mullen. Hybridization reveals the evolving genomic architecture of speciation. Cell Reports, 2013 DOI: 10.1016/j.celrep.2013.09.042

Cite This Page:

University of Chicago Medical Center. "Evolution of new species requires few genetic changes." ScienceDaily. ScienceDaily, 31 October 2013. <www.sciencedaily.com/releases/2013/10/131031124612.htm>.
University of Chicago Medical Center. (2013, October 31). Evolution of new species requires few genetic changes. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2013/10/131031124612.htm
University of Chicago Medical Center. "Evolution of new species requires few genetic changes." ScienceDaily. www.sciencedaily.com/releases/2013/10/131031124612.htm (accessed July 30, 2014).

Share This




More Plants & Animals News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Raw: Otters Enjoy Water Slides at Japan Zoo

Raw: Otters Enjoy Water Slides at Japan Zoo

AP (July 30, 2014) River otters were hitting the water slides to beat the summer heatwave on Wednesday at Ichikawa City's Zoological and Botanical Garden. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Butterflies Show Origin of Species as an Evolutionary Process, Not a Single Event

Oct. 31, 2013 The evolution of new species might not be as hard as it seems, even when diverging populations remain in contact and continue to produce offspring. That's the conclusion of studies that examine ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins