Featured Research

from universities, journals, and other organizations

Clay may have been birthplace of life on Earth, new study suggests

Date:
November 5, 2013
Source:
Cornell University
Summary:
Clay -- a seemingly infertile blend of minerals -- might have been the birthplace of life on Earth. Or at least of the complex biochemicals that make life possible, biological engineers report.

In simulated ancient seawater, clay forms a hydrogel -- a mass of microscopic spaces capable of soaking up liquids like a sponge. Over billions of years, chemicals confined in those spaces could have carried out the complex reactions that formed proteins, DNA and eventually all the machinery that makes a living cell work. Clay hydrogels could have confined and protected those chemical processes until the membrane that surrounds living cells developed.
Credit: SSilver / Fotolia

Clay, a seemingly infertile blend of minerals, might have been the birthplace of life on Earth. Or at least of the complex biochemicals that make life possible, Cornell University biological engineers report in the Nov. 7 online issue of the journal Scientific Reports, published by Nature Publishing.

"We propose that in early geological history clay hydrogel provided a confinement function for biomolecules and biochemical reactions," said Dan Luo, professor of biological and environmental engineering and a member of the Kavli Institute at Cornell for Nanoscale Science.

In simulated ancient seawater, clay forms a hydrogel -- a mass of microscopic spaces capable of soaking up liquids like a sponge. Over billions of years, chemicals confined in those spaces could have carried out the complex reactions that formed proteins, DNA and eventually all the machinery that makes a living cell work. Clay hydrogels could have confined and protected those chemical processes until the membrane that surrounds living cells developed.

To further test the idea, the Luo group has demonstrated protein synthesis in a clay hydrogel. The researchers previously used synthetic hydrogels as a "cell-free" medium for protein production. Fill the spongy material with DNA, amino acids, the right enzymes and a few bits of cellular machinery and you can make the proteins for which the DNA encodes, just as you might in a vat of cells.

To make the process useful for producing large quantities of proteins, as in drug manufacturing, you need a lot of hydrogel, so the researchers set out to find a cheaper way to make it. Postdoctoral researcher Dayong Yang noticed that clay formed a hydrogel. Why consider clay? "It's dirt cheap," said Luo. Better yet, it turned out unexpectedly that using clay enhanced protein production.

But then it occurred to the researchers that what they had discovered might answer a long-standing question about how biomolecules evolved. Experiments by the late Carl Sagan of Cornell and others have shown that amino acids and other biomolecules could have been formed in primordial oceans, drawing energy from lightning or volcanic vents. But in the vast ocean, how could these molecules come together often enough to assemble into more complex structures, and what protected them from the harsh environment?

Scientists previously suggested that tiny balloons of fat or polymers might have served as precursors of cell membranes. Clay is a promising possibility because biomolecules tend to attach to its surface, and theorists have shown that cytoplasm -- the interior environment of a cell -- behaves much like a hydrogel. And, Luo said, a clay hydrogel better protects its contents from damaging enzymes (called "nucleases") that might dismantle DNA and other biomolecules.

As further evidence, geological history shows that clay first appeared -- as silicates leached from rocks -- just at the time biomolecules began to form into protocells -- cell-like structures, but incomplete -- and eventually membrane-enclosed cells. The geological events matched nicely with biological events.

How these biological machines evolved remains to be explained, Luo said. For now his research group is working to understand why a clay hydrogel works so well, with an eye to practical applications in cell-free protein production.

Luo collaborated with professor Max Lu of the Australian Institute for Bioengineering and Nanotechnology at the University of Queensland in Australia. The work was performed at the Cornell Center for Materials Research Shared Facilities, supported by the National Science Foundation.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Clay may have been birthplace of life on Earth, new study suggests." ScienceDaily. ScienceDaily, 5 November 2013. <www.sciencedaily.com/releases/2013/11/131105132027.htm>.
Cornell University. (2013, November 5). Clay may have been birthplace of life on Earth, new study suggests. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2013/11/131105132027.htm
Cornell University. "Clay may have been birthplace of life on Earth, new study suggests." ScienceDaily. www.sciencedaily.com/releases/2013/11/131105132027.htm (accessed August 1, 2014).

Share This




More Plants & Animals News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins