Featured Research

from universities, journals, and other organizations

The heart's own stem cells play their part in regeneration

Date:
November 28, 2013
Source:
Max-Planck-Gesellschaft
Summary:
Up until a few years ago, the common school of thought held that the mammalian heart had very little regenerative capacity. However, scientists now know that heart muscle cells constantly regenerate, albeit at a very low rate. Sca1 stem cells replace steadily aging heart muscle cells, new research shows.

Stem cells play a part in heart regeneration. This image of the fluorescence microscope depicts a section of the heart tissue of a mouse. The green colouring of the cells in the middle shows that the cell originated from a so-called Sca1 stem cell.
Credit: MPI for Heart and Lung Research

Up until a few years ago, the common school of thought held that the mammalian heart had very little regenerative capacity. However, scientists now know that heart muscle cells constantly regenerate, albeit at a very low rate. Researchers at the Max Planck Institute for Heart and Lung Research in Bad Nauheim, have identified a stem cell population responsible for this regeneration. Hopes are growing that it will be possible in future to stimulate the self-healing powers of patients with diseases and disorders of the heart muscle, and thus develop new potential treatments.

Some vertebrates seem to have found the fountain of youth, the source of eternal youth, at least when it comes to their heart. In many amphibians and fish, for example, this important organ has a marked capacity for regeneration and self-healing. Some species in the two animal groups have even perfected this capability and can completely repair damage caused to heart tissue, thus maintaining the organ's full functionality.

The situation is different for mammals, whose hearts have a very low regenerative capacity. According to the common school of thought that has prevailed until recently, the reason for this deficit is that the heart muscle cells in mammals cease dividing shortly after birth. It was also assumed that the mammalian heart did not have any stem cells that could be used to form new heart muscle cells. On the contrary: new studies show that aged muscle cells are also replaced in mammalian hearts. Experts estimate, however, that between just one and four percent of heart muscle cells are replaced every year.

Scientists in Thomas Braun's Research Group at the Max Planck Institute for Heart and Lung Research have succeeded in identifying a stem cell population in mice that plays a key role in this regeneration of heart muscle cells. Experiments conducted by the researchers in Bad Nauheim on genetically modified mice show that the Sca1 stem cells in a healthy heart are involved in the ongoing replacement of heart muscle cells. The Sca-1 cells increase their activity if the heart is damaged, with the result that significantly more new heart muscle cells are formed.

Since, in comparison to the large amount of heart muscle cells, Sca-1 stem cells account for just a tiny proportion of the cells in the heart muscle, searching for them is like searching for a needle in a haystack. "We also faced the problem that Sca-1 is no longer available in the cells as a marker protein for stem cells after they have been changed into heart muscle cells. To prove this, we had to be inventive," says project leader Shizuka Uchida. The Max Planck researchers genetically modified the stem cells to such an extent that, in addition to the Sca-1, they produced another visible marker. Even if Sca-1 was subsequently no longer visible, the marker could still be detected permanently.

"In this way, we were able to establish that the proportion of heart muscle cells originating from Sca-1 stem cells increased continuously in healthy mice. Around five percent of the heart muscle cells regenerated themselves within 18 months," says Uchida. Moreover, mice suffering from heart disease triggered by the experiment had up to three times more of these newly formed heart muscle cells.

"The data shows that, in principle, the mammalian heart is able to trigger regeneration and renewal processes. Under normal circumstances, however, these processes are not enough to ultimately repair cardiac damage," says Braun. The aim is to find ways in which the formation of new heart muscle cells from heart stem cells can be improved and thereby strengthen the heart's self-healing powers.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shizuka Uchida, Piera De Gaspari, Sawa Kostin, Katharina Jenniches, Ayse Kilic,Yasuhiro Izumiya, Ichiro Shiojima, Karsten grosse Kreymborg, Harald Renz, Kenneth Walsh, and Thomas Braun. Sca1-derived cells are a source of myocardial renewal in the murine adult heart. Stem Cell Reports, November 2013

Cite This Page:

Max-Planck-Gesellschaft. "The heart's own stem cells play their part in regeneration." ScienceDaily. ScienceDaily, 28 November 2013. <www.sciencedaily.com/releases/2013/11/131128103957.htm>.
Max-Planck-Gesellschaft. (2013, November 28). The heart's own stem cells play their part in regeneration. ScienceDaily. Retrieved July 21, 2014 from www.sciencedaily.com/releases/2013/11/131128103957.htm
Max-Planck-Gesellschaft. "The heart's own stem cells play their part in regeneration." ScienceDaily. www.sciencedaily.com/releases/2013/11/131128103957.htm (accessed July 21, 2014).

Share This




More Health & Medicine News

Monday, July 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins