Featured Research

from universities, journals, and other organizations

Blind cavefish offer evidence for alternative mechanism of evolutionary change

Date:
December 12, 2013
Source:
Marine Biological Laboratory
Summary:
In a blind fish that dwells in deep, dark Mexican caves, scientists have found evidence for a long-debated mechanism of evolutionary change that is distinct from natural selection of spontaneously arising mutations, as reported this week in the journal Science.

Jeffery lab collaborators Helena Bilandzija and Branko Jalzic are shown at a cave in the northeastern Mexican mountains where Astyanas mexicanus live. Jeffery led the expeditions that collected the fish and measured the cave water for this study.
Credit: William Jeffery/MBL Woods Hole

In a blind fish that dwells in deep, dark Mexican caves, scientists have found evidence for a long-debated mechanism of evolutionary change that is distinct from natural selection of spontaneously arising mutations, as reported this week in the journal Science.

The eyeless cavefish Astyanas mexicanus is "a special system in which we can look at evolution in action," says article co-author William Jeffery, a senior adjunct scientist at the Marine Biological Laboratory (MBL) in Woods Hole, Mass., and a professor at the University of Maryland. The Science study was led by Nicolas Rohner and Clifford J. Tabin at Harvard Medical School's Department of Genetics.

Using the cavefish, the team demonstrated for the first time in nature how "standing" or "cryptic" genetic variations in an animal, which have been inherited from prior generations without causing any physical changes in the animal, can be "unmasked" by the shock of entering a new environment. Gene variants that improve the animal's ability to adapt to that new environment can then be selected for, and passed on to its progeny. This is distinct from the established evolutionary mechanism of "de novo" genetic mutations that arise by chance after the animal has entered the new environment, which also provide a substrate upon which natural selection can act.

The environmental shock that prompted the loss of eyes in the cavefish, the scientists propose, occurred about 2 or 3 million years ago when its surface-dwelling ancestors, which have eyes, "either colonized these caves or were trapped in them," Jeffery says. The fish's transition from swimming outside the cave to swimming inside the cave, where the water is purer and less conductive of electricity, inhibited the activity of a "heat shock" protein called HSP90. (Prior studies in the fruit fly of this protein, which is critical in regulating protein folding, had suggested that it may play a role in masking cryptic genetic variation.) In the case of the cavefish, the present study finds, HSP90 inhibition due to environmental shock unmasked cryptic genetic variations, allowing smaller or bigger eyes to be expressed in different individuals.

"On the surface, in an environment of light, bigger eyes are more helpful than tiny eyes. But once the fish gets into the cave, if that (genetic variation) is unmasked, it doesn't matter if you have small eyes or big eyes because it is completely dark," Jeffery says. The paper suggests that fish that expressed smaller eyes, and eventually no eyes, were selected for because it provided an adaptive advantage.

"That is controversial," Jeffery says, noting that it is difficult even for scientists in the field to conceive of the purpose of losing eyes. The paper proposes several possible advantages of eyelessness, such as allowing the animal to conserve the large amount of energy it takes to maintain an eye and to expend it, instead, on traits that are useful in a dark environment.

The descent of the surface-dwelling Astyanas mexicanus into the cave a few million years ago "is a very, very recent event, in evolutionary terms," Jeffery says. "We are talking about a rapid evolutionary process here, as opposed to the 500 million years of natural selection that have unfolded since most animal [groups] appeared during the Cambrian Period. The fact that these eyeless cavefish are so young makes them very attractive to understand evolutionary processes at their beginning."


Story Source:

The above story is based on materials provided by Marine Biological Laboratory. The original article was written by Diana Kenney. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. Rohner, D. F. Jarosz, J. E. Kowalko, M. Yoshizawa, W. R. Jeffery, R. L. Borowsky, S. Lindquist, C. J. Tabin. Cryptic Variation in Morphological Evolution: HSP90 as a Capacitor for Loss of Eyes in Cavefish. Science, 2013; 342 (6164): 1372 DOI: 10.1126/science.1240276

Cite This Page:

Marine Biological Laboratory. "Blind cavefish offer evidence for alternative mechanism of evolutionary change." ScienceDaily. ScienceDaily, 12 December 2013. <www.sciencedaily.com/releases/2013/12/131212142201.htm>.
Marine Biological Laboratory. (2013, December 12). Blind cavefish offer evidence for alternative mechanism of evolutionary change. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2013/12/131212142201.htm
Marine Biological Laboratory. "Blind cavefish offer evidence for alternative mechanism of evolutionary change." ScienceDaily. www.sciencedaily.com/releases/2013/12/131212142201.htm (accessed September 2, 2014).

Share This




More Fossils & Ruins News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did Neanderthals Play Tic-Tac-Toe?

Did Neanderthals Play Tic-Tac-Toe?

Newsy (Sep. 2, 2014) — Artwork found in a Gibraltar cave that was possibly done by Neanderthals suggests they may have been smarter than we all thought. Video provided by Newsy
Powered by NewsLook.com
Millions Of Historical Public Domain Photos Added To Flickr

Millions Of Historical Public Domain Photos Added To Flickr

Newsy (Aug. 30, 2014) — Historian Kalev Leetaru uploaded a large collection of historical photos, images that were previously difficult to collect. Video provided by Newsy
Powered by NewsLook.com
Minds Blown: Scientists Develop Fish That Walk On Land

Minds Blown: Scientists Develop Fish That Walk On Land

Newsy (Aug. 28, 2014) — Canadian scientists looking into the very first land animals took a fish out of water and forced it to walk. Video provided by Newsy
Powered by NewsLook.com
Huge Ancient Wine Cellar Found In Israel

Huge Ancient Wine Cellar Found In Israel

Newsy (Aug. 28, 2014) — An international team uncovered a large ancient wine celler that likely belonged to a Cannonite ruler. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Rapid Evolution of Novel Forms: Environmental Change Triggers Inborn Capacity for Adaptation

Dec. 12, 2013 — In the classical view of evolution, species experience spontaneous genetic mutations that produce various novel traits—some helpful, some detrimental. Nature then selects for those most beneficial, ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins