Featured Research

from universities, journals, and other organizations

High-resolution 3-D imaging draws new picture of Golgi's whereabouts during cell division

Date:
December 15, 2013
Source:
American Society for Cell Biology
Summary:
Resolving a fundamental question in cell biology and showing off the powers of new high-resolution 3-D imaging, scientists have discovered where the Golgi apparatus, which sorts newly synthesized proteins for transport inside and outside the cell, goes when it disassembles during cell division. The disassembled Golgi were found being closely held by the endoplasmic reticulum.

Resolving a fundamental question in cell biology and showing off the powers of new high-resolution 3-D imaging, NIH scientists have discovered where the Golgi apparatus, which sorts newly synthesized proteins for transport inside and outside the cell, goes when it disassembles during cell division, according to research to be presented at the American Association for Cell Biology (ASCB) annual meeting in New Orleans.

With conventional microscopy techniques, the scientists said they could only watch as the Golgi dissolved into tiny "puncta" and an unresolvable haze. But powerful new imaging techniques allowed the researchers to follow the Golgi through its "choreographed disassembly process," which now appears tightly linked to the endoplasmic reticulum (ER) during cell division, said Dylan Burnette, Ph.D., and Prabuddha Sengupta, Ph.D., and Jennifer Lippincott-Schwartz, Ph.D., of the Eunice Shriver National Institute of Child Health and Human Development (NICHD) in Bethesda, MD.

Cell division by mitosis is the complicated yet critical process by which a mother cell divides into two daughter cells. But first, the mother cell has to pack up her cellular household contents, disassembling and dividing up everything for her soon-to-be-formed daughters.

How cells manage division has been exhaustively studied for over a century and yet basic mysteries remained. Scientists knew that some organelles such as the ER are pulled apart before division but keep their tubular membrane structure intact. Other organelles such as the Golgi, go to pieces after the prophase of mitosis through choreographed disassembly.

But where does the Golgi go once it is in pieces? To answer the question, the NIH researchers started with two plausible theories: In the endoplasmic reticulum (ER)-linked hypothesis, the Golgi puncta and enzyme haze are closely held by the ER; in the non-ER-linked model, the puncta and haze float about on their own, waiting for cytokinesis when the two daughter cells separate and the Golgi body reappears as stacks of membrane-bound cisternae, ready to sort proteins from the reassembled ER.

Powered by their new imaging technologies, which gave them far greater resolution than previously possible, the researchers saw clear support of the ER-linked model -- the enzyme haze sticking close to ER markers with the puncta clustering near ER exits.

For a second line of proof, the NICHD researchers followed up with a pharmacological-based trapping assay that showed Golgi enzymes being held tightly by the ER during mitosis. The results indicate that Golgi enzymes redistribute into the ER during mitosis, and that they must follow an ER export pathway to reform the Golgi at the end of mitosis.

This study not only resolves a basic cellular question but shows what new solutions await as these new technologies give us keener vision and sharper tools.


Story Source:

The above story is based on materials provided by American Society for Cell Biology. Note: Materials may be edited for content and length.


Cite This Page:

American Society for Cell Biology. "High-resolution 3-D imaging draws new picture of Golgi's whereabouts during cell division." ScienceDaily. ScienceDaily, 15 December 2013. <www.sciencedaily.com/releases/2013/12/131215160850.htm>.
American Society for Cell Biology. (2013, December 15). High-resolution 3-D imaging draws new picture of Golgi's whereabouts during cell division. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2013/12/131215160850.htm
American Society for Cell Biology. "High-resolution 3-D imaging draws new picture of Golgi's whereabouts during cell division." ScienceDaily. www.sciencedaily.com/releases/2013/12/131215160850.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins