Featured Research

from universities, journals, and other organizations

New control pathways in synthesis of plant chemical defences

Date:
December 17, 2013
Source:
Universidad de Barcelona
Summary:
A scientific study reveals a new mechanism to control saponin biosynthesis. Saponins are essential in the adaptation of many plants to the environment and have high biomedical and industrial interest.

The new research is focused on the plant Medicago truncatula, a legume used as a model in physiological and molecular studies.
Credit: Karel Spruyt, VIB).

A scientific study reveals a new mechanism to control saponin biosynthesis. Saponins are essential in the adaptation of many plants to the environment and have high biomedical and industrial interest. The article was recently published in the journal Nature. Professor Narciso Campos, from the Faculty of Biology of the University of Barcelona, participates in the international study led by the expert Alain Goossens from the Flanders Institute for Biotechnology (VIB, Belgium).

Secondary metabolites: defense and adaptation to the environment

The study analyses the synthesis of saponins, a group of secondary metabolites found in many plants. Saponins defend plants against environmental aggressions (pathogens, herbivores, etc.), by altering membrane permeability, and have importance in pharmaceutical and industrial sectors as antimicrobial, anticancer and haemolytic agents.

Saponins derive from the isoprenoid (terpenoid) biosynthetic pathway, a metabolic route in which the HMGR (3-hydroxy-3-methylglutaryl-CoA reductase) enzyme plays key role. As Professor Narciso Campos mentions, "HMGR was identified four decades ago in mammals, and a few years later in plants and fungi. In the case of humans, it has a key regulatory role in the synthesis of cholesterol, the imbalance of which causes severe abnormalities, such as atherosclerosis. In the case of plants and fungi, the enzyme plays also a crucial role in sterol biosynthesis. Because its biomedical interest, isoprenoid biosynthesis is the subject with the highest number of Nobel Prizes."

A molecular brake in saponin biosynthesis

The new research is focused on the plant Medicago truncatula, a legume used as a model in physiological and molecular studies. When plants detect an external challenge, massive accumulation of saponins is triggered by the phytohormone methyl jasmonate. More precisely, this biochemical signal induces different isoforms of the enzyme HMGR and, subsequently, the synthesis of the defensive saponins. As proposed in the published work, there is brake for this metabolic cascade which was unknown to date: E3 ubiquitin ligase; it negatively regulates HMGR activity and, consequently, saponin synthesis.

"Ubiquitin ligase is a subunit of the protein degradation system ubiquitin-proteasome system. which recognises the molecular target to be degraded. In protein biology, degradative processes are as important as biosynthetic ones. In fact, many human diseases are due to the accumulation of proteins which have not been conveniently degraded," points out Narciso Campos, member of the Research Group Plant Molecular Genetics of UB and the Centre for Research in Agricultural Genomics (CRAG).

A highly complex pathway in plants

Unlike other organisms, plants have a highly complex isoprenoid biosynthetic pathway. To date, around 35,000 isoprenoid compounds, most from plants, have been described. The identified compounds, which are only a part of those present in nature, have an extraordinary biotechnological and industrial potential. Isoprenoids are essential for many plant functions (respiration, photosynthesis, development, cell organization, etc.) and for the plant interaction with the environment (defense, insect attraction, etc.). "Each group of plants has its particular set of isoprenoids," explains Narciso Campos.

Progress in the elucidation of isoprenoid biosynthetic pathway, in plants, opens new paths in the research of cholesterol metabolism. Yeast, mammal and plant HMGR have a bipartite structure formed by the catalytic domain and a membrane domain inserted in the endoplasmic reticulum. Several studies have shown that the expression of the HMGR membrane domain leads to massive accumulation of endoplasmic reticulum membranes. Narciso Campos points out that this has been maintained through evolution and could be related to the control of sterol biosynthesis.


Story Source:

The above story is based on materials provided by Universidad de Barcelona. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jacob Pollier, Tessa Moses, Miguel González-Guzmán, Nathan De Geyter, Saskia Lippens, Robin Vanden Bossche, Peter Marhavý, Anna Kremer, Kris Morreel, Christopher J. Guérin, Aldo Tava, Wieslaw Oleszek, Johan M. Thevelein, Narciso Campos, Sofie Goormachtig, Alain Goossens. The protein quality control system manages plant defence compound synthesis. Nature, 2013; 504 (7478): 148 DOI: 10.1038/nature12685

Cite This Page:

Universidad de Barcelona. "New control pathways in synthesis of plant chemical defences." ScienceDaily. ScienceDaily, 17 December 2013. <www.sciencedaily.com/releases/2013/12/131217085223.htm>.
Universidad de Barcelona. (2013, December 17). New control pathways in synthesis of plant chemical defences. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2013/12/131217085223.htm
Universidad de Barcelona. "New control pathways in synthesis of plant chemical defences." ScienceDaily. www.sciencedaily.com/releases/2013/12/131217085223.htm (accessed September 21, 2014).

Share This



More Plants & Animals News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: San Diego Zoo Welcomes Cheetah Cubs

Raw: San Diego Zoo Welcomes Cheetah Cubs

AP (Sep. 20, 2014) — The San Diego Zoo has welcomed two Cheetah cubs to its Safari Park. The nearly three-week-old female cubs are being hand fed and are receiving around the clock care. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) — Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) — The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) — A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins