Featured Research

from universities, journals, and other organizations

Roses are red: Why some petunias are blue

Date:
January 2, 2014
Source:
Cell Press
Summary:
Researchers have uncovered the secret recipe to making some petunias such a rare shade of blue. The findings may help to explain and manipulate the color of other ornamental flowers, not to mention the taste of fruits and wine, say researchers. From the flowers' point of view, the findings also have important implications, since blue petals instead of red might spell disaster when it comes to attracting pollinators.

Researchers have uncovered the secret recipe to making some petunias such a rare shade of blue. The findings may help to explain and manipulate the color of other ornamental flowers, not to mention the taste of fruits and wine, say researchers who report their findings in the Cell Press journal Cell Reports on January 2nd. From the flowers' point of view, the findings also have important implications, since blue petals instead of red might spell disaster when it comes to attracting pollinators.
Credit: Cell Reports, Faraco et al.

Researchers have uncovered the secret recipe to making some petunias such a rare shade of blue. The findings may help to explain and manipulate the color of other ornamental flowers, not to mention the taste of fruits and wine, say researchers who report their findings in the Cell Press journal Cell Reports on January 2nd. From the flowers' point of view, the findings also have important implications, since blue petals instead of red might spell disaster when it comes to attracting pollinators.

The key discovery is a kind of cellular pump that was previously unknown in plants. When that pump fails to work properly, as it does in some petunias, the flower petals can't acidify special compartments within their cells. As a result, those petals turn blue instead of red or violet -- much like the litmus paper many of us will recall from chemistry class.

"Blue flower colors have been enigmatic for a long time and the blue rose appears in many myths, legends, and even operas," said Francesca Quattrocchio of the VU-University in Amsterdam. "Already in the 1910s it was proposed that blue flower colors were caused by reduced acidity of the 'cell sap.' Others figured that drastic changes in the cell sap might cause terrible deleterious defects, and proposed that blue flower colors had something to do with the formation of metal-anthocyanin complexes. Our current opinion is that both got it right."

Still, no one really knew how it worked. Scientists discovered one type of proton pump in the 1980s. "Over the decades, the idea took hold that all H+ transport across internal membranes is driven by those v-ATPases," Ronald Koes of VU-University in the Netherlands explained. Not so, the new work shows.

In most cells, there are but modest differences in pH between the insides and the outsides of intracellular compartments or vacuoles. Petals, by comparison, can show much steeper pH gradients. Scientists also knew that the differences in pH between blue petunia petals and red ones were somehow connected to a handful of so-called PH genes.

Quattrocchio and Koes now find that those genes encode a proton-pumping pathway that allows petal cells, and perhaps other cells as well, to hyperacidify particular compartments. The pump is composed of two distinct proteins, which together keep on going -- and building acidity -- even when other pumps would stop. Blue petunias are blue because of genetic defects that leave that special pumping system out of order.

"By studying the difference between blue and red flowers of petunias, we have discovered a novel type of transporter able to strongly acidify the inside of the vacuole," Quattrocchio said.

Now they have the tools to isolate plant varieties with different acidification levels in their vacuoles, she added, and that could prove very fruitful indeed when it comes to generating new colors in valuable flowers or new tastes in fruits, wines, and juices. The researchers say those more acidic vacuoles and the pumps that make them possible might even be exploited as reservoirs for storing toxic compounds, such as metals and salts.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Faraco et al. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Reports, January 2014

Cite This Page:

Cell Press. "Roses are red: Why some petunias are blue." ScienceDaily. ScienceDaily, 2 January 2014. <www.sciencedaily.com/releases/2014/01/140102133223.htm>.
Cell Press. (2014, January 2). Roses are red: Why some petunias are blue. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2014/01/140102133223.htm
Cell Press. "Roses are red: Why some petunias are blue." ScienceDaily. www.sciencedaily.com/releases/2014/01/140102133223.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins