Featured Research

from universities, journals, and other organizations

Meet the rainforest 'diversity police'

Date:
January 22, 2014
Source:
University of Oxford
Summary:
A new study has revealed that fungi, often seen as pests, play a crucial role policing biodiversity in rainforests. The research found that fungi regulate diversity in rainforests by making dominant species victims of their own success. Fungi spread quickly between closely-packed plants of the same species, preventing them from dominating and enabling a wider range of species to flourish.

A netted stinkhorn fungus (Dictyophora sp.) in the Belize rainforest. Researchers found that fungi like this help to police diversity in tropical rainforests.
Credit: Robert Bagchi

A new study has revealed that fungi, often seen as pests, play a crucial role policing biodiversity in rainforests.

The Oxford University-led research found that fungi regulate diversity in rainforests by making dominant species victims of their own success. Fungi spread quickly between closely-packed plants of the same species, preventing them from dominating and enabling a wider range of species to flourish.

'In the plant world, close relatives make bad neighbours,' said Dr Owen Lewis of Oxford University's Department of Zoology, who led the study. 'Seedlings growing near plants of the same species are more likely to die and we now know why. It has long been suspected that something in the soil is responsible, and we've now shown that fungi play a crucial role. It's astonishing to see microscopic fungi having such a profound effect on entire rainforests.

'Fungi prevent any single species from dominating rainforests as they spread more easily between plants and seedlings of the same species. If lots of plants from one species grow in the same place, fungi quickly cut their population down to size, levelling the playing field to give rarer species a fighting chance. Plots sprayed with fungicide soon become dominated by a few species at the expense of many others, leading to a marked drop in diversity.'

The study, published in Nature, looked at seedling plots across 36 sampling stations in the Chiquibul Forest Reserve, Belize. It was carried out by scientists at Oxford University and Sheffield University and funded by the Natural Environment Research Council (NERC).

Researchers sprayed plots with water, insecticide or fungicide every week for 17 months. They found that the fungicide Amistarฎ dealt a significant blow to diversity, reducing the effective number of species by 16%. While the insecticide did change the composition of surviving species, it did not have an overall impact on diversity.

'We expected that removal of both fungi and insects would have an effect on the tree species,' said Professor Rob Freckleton of Sheffield University, who co-led the study. 'However what was unexpected was that removal of the fungi affected diversity, but eliminating insects didn't. Ours is the first study to unpick the effects of the different natural enemies.'

Scientists had suspected that fungus-like microorganisms called oomycetes might also play a part in policing rainforest diversity, but this now seems unlikely.

'Oomycetes are potent pathogens that can cause seeds and seedlings to rot, and were responsible for the 1840s potato famine,' said Professor Sarah Gurr, formerly of Oxford University and now at the University of Exeter. 'To see if they play a role in promoting rainforest biodiversity, we sprayed plots with Ridomil Goldฎ, which protects plants against oomycetes. Ridomil Goldฎ had no significant effect on the number of surviving species, suggesting that true fungi and not oomycetes are driving rainforest diversity.'

The findings show that fungi play a vital role in maintaining the biodiversity of rainforests, preventing a few highly competitive species from dominating. It helps to explain why tropical rainforests are so much more diverse than forests in temperate countries.

'We suspect that the effect of fungi will be strongest in wetter, hotter areas because this is where they thrive,' said lead author Dr Robert Bagchi, who began the study at Oxford University and completed it at ETH Zurich. 'This has important implications for how rainforests will respond to climate change, which is often predicted to reduce overall rainfall making it harder for fungi to spread. Without fungi to keep species in check, we could see a significant knock-on effect and lose a lot of the diversity that makes rainforests so special.'


Story Source:

The above story is based on materials provided by University of Oxford. Note: Materials may be edited for content and length.


Cite This Page:

University of Oxford. "Meet the rainforest 'diversity police'." ScienceDaily. ScienceDaily, 22 January 2014. <www.sciencedaily.com/releases/2014/01/140122133827.htm>.
University of Oxford. (2014, January 22). Meet the rainforest 'diversity police'. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2014/01/140122133827.htm
University of Oxford. "Meet the rainforest 'diversity police'." ScienceDaily. www.sciencedaily.com/releases/2014/01/140122133827.htm (accessed July 24, 2014).

Share This




More Plants & Animals News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) — An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) — The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) — A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) — ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins