Featured Research

from universities, journals, and other organizations

RNA tail linked to protein production during embryogenesis, study shows

Date:
January 30, 2014
Source:
Whitehead Institute for Biomedical Research
Summary:
Researchers have determined that poly(A) tails on messenger RNAs (mRNAs) shift their role in the regulation of protein production during early embryogenesis. This finding about the regulation of mRNA translation also provides insight into how microRNAs control protein production.

PAL-seq is a high-throughput sequencing-based method that measures the poly(A) tails of individual messenger RNA molecules. This is achieved by coupling a fluorescence-based readout of poly(A)-tail length with sequencing of the poly(A)-proximal region.
Credit: Courtesy of Nature

In higher animals, an embryo’s protein production immediately after fertilization relies on messenger RNAs (mRNAs) inherited from the mother. But shortly thereafter, the tiny organism undergoes a profound shift as it activates the transcription of its own genome during the maternal-to-zygotic transition (MZT). Whitehead Institute researchers have now determined that another shift—a change in how mRNA translation is controlled—happens shortly after this same point in development.

“This switch in the nature of translation control is reminiscent of what we know about transcription control and its timing,” says Whitehead Member David Bartel, who is also a Howard Hughes Medical Institute investigator and a professor of biology at MIT.

When cells manufacture proteins, they first use DNA as a template to create mRNAs. In this process, protein-coding genes are first copied into RNAs, which are then modified by tacking on a string of adenosine monophosphate molecules to create what’s known as a poly(A) tail on the end of each RNA. The cell’s translation machinery then decodes the mature mRNAs, using this information to make the prescribed proteins.

Previously, scientists believed that the length of an mRNA’s poly(A) tail affected how efficiently an mRNA would be translated—the longer the poly(A) tail, the greater the protein production. This theory was extrapolated from studies of gene translation in early embryos, in part because little research had been conducted in organisms after the MZT. The unavailability of technology for high-throughput measurement of poly(A)-tail lengths held back research in this area.

Now, this latest Whitehead research calls this theory into question. Using a high-throughput method he developed, Alexander Subtelny, a graduate student in Bartel’s lab, documented the length of poly(A) tails on millions of mRNAs in cells from a variety of animals, including mice, frogs, zebrafish, and humans. At the same time, Stephen Eichhorn, also a graduate student in Bartel’s lab, looked at how often the mRNAs were translated. As Subtelny and Eichhorn reported recently online in the journal Nature, poly(A)-tail length and translational efficiency show the expected relationship in very early fish and frog embryos. The surprise was that poly(A) tail length does not impact translation in cells that have matured beyond the gastrulation stage of the embryo in the examined species.

This fact may also explain seemingly conflicting accounts of how RNA snippets, called microRNAs, affect translation. MicroRNAs adjust protein output by interacting with mRNAs, both by repressing the translation of mRNAs they pair with and by destabilizing these mRNAs. Subtelny and Eichhorn examined microRNA function in early zebrafish embryos through the gastrulation stage. In pre-gastrulation embryos, microRNAs reduced translation by trimming the poly(A) tails of their target mRNAs, whereas after gastrulation, microRNAs destabilized their target mRNAs.

“Our results may cause people to rethink the mechanisms of gene regulation that involve the poly(A) tail in most cells,” says Subtelny, who with Eichhorn is a co-author of the Nature paper. “But we think that some cells, including nerve cells and oocytes, may have gene regulation similar to what we’ve observed in the early embryo.”

Although Subtelny and Eichhorn believe that studying variability of gene regulation would be interesting, both are intrigued by something more basic.

“We don’t know what the mechanism behind this switch in gene regulation is, and we want to figure that out,” says Eichhorn.


Story Source:

The above story is based on materials provided by Whitehead Institute for Biomedical Research. The original article was written by Nicole Giese Rura. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexander O. Subtelny, Stephen W. Eichhorn, Grace R. Chen, Hazel Sive, David P. Bartel. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature, 2014; DOI: 10.1038/nature13007

Cite This Page:

Whitehead Institute for Biomedical Research. "RNA tail linked to protein production during embryogenesis, study shows." ScienceDaily. ScienceDaily, 30 January 2014. <www.sciencedaily.com/releases/2014/01/140130091446.htm>.
Whitehead Institute for Biomedical Research. (2014, January 30). RNA tail linked to protein production during embryogenesis, study shows. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2014/01/140130091446.htm
Whitehead Institute for Biomedical Research. "RNA tail linked to protein production during embryogenesis, study shows." ScienceDaily. www.sciencedaily.com/releases/2014/01/140130091446.htm (accessed September 30, 2014).

Share This



More Plants & Animals News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins