Featured Research

from universities, journals, and other organizations

Developmental gene influences sperm formation, fruit fly model demonstrates

Date:
February 21, 2014
Source:
Heidelberg, Universität
Summary:
The basic regulatory mechanisms of stem cell differentiation have been under investigation using the Drosophila melanogaster fruit fly as a model organism. Researchers were able to show how a special developmental gene from the Hox family influences germline stem cells. These cells are responsible for sperm formation. The scientists found that impairment of Hox gene function resulted in prematurely aged sperms.

Confocal image of a Drosophila testis that shows the localization of the Abd-B Hox protein (green). Abd-B is essential for the positioning and function of the stem cell niche.
Credit: Ingrid Lohmann

Heidelberg researchers have been delving into the basic regulatory mechanisms of stem cell differentiation. Using the Drosophila melanogaster fruit fly as a model organism, the team led by Prof. Dr. Ingrid Lohmann at Heidelberg University's Centre for Organismal Studies was able to show how a special developmental gene from the Hox family influences germline stem cells. These cells are responsible for sperm formation. The scientists, working in the “Maintenance and Differentiation of Stem Cells in Development and Disease” Collaborative Research Centre (CRC 873), found that impairment of Hox gene function resulted in prematurely aged sperms.

As “immature” somatic cells, stem cells can mature into different types of cells, thus making them responsible for the development of all the tissues and organs in the body. They are also able to repair damaged adult cells. “Advancements in medical research have shown that stem cells can be used to treat certain diseases. To fulfil the promise of stem cell therapy, it is important to discover the function of the respective stem cells and understand how they interact with their environment, that is, the surrounding cells and tissues,” explains Prof. Lohmann, who heads the Developmental Biology research group at the Centre for Organismal Studies (COS).

This microenvironment, which stabilises and regulates stem cell activity, is called a stem cell niche. The Heidelberg research team investigated the niches in the testis of the fruit fly. The germline stem cells there produce daughter cells that develop into mature sperms. “In our studies, we wanted to find out the nature, if any, of the relationship between germline stem cells and the gene Abd-B,” states Prof. Lohmann, who further explains that Abd-B belongs to a family of developmental genes referred to as Hox genes. These Hox genes control the activity of a multitude of other genes that are responsible for the early development of an organism.

According to the team’s research, the Abd-B gene is critical to niche function in the Drosophila testis. If Abd-B is mutated, the niche – and the stem cells located there – lose their position in the testis. This damages their function, which in turn causes the germline stem cells to divide incorrectly. In the fruit flies studied, this caused the formation of prematurely aged sperm. “Our new knowledge of the function of Abd-B helps us to better understand how these processes are regulated in higher organisms, including vertebrates,” explains Ingrid Lohmann.

In CRC 873, funded by the German Research Foundation, medical and biological scientists investigate the basic regulatory mechanisms that control the self-renewal and differentiation of stem cells. Different model organisms like the fruit fly Drosophila melanogaster are used for their research, aimed at decoding the principles of stem cell control with the aim to also apply them to higher forms of life and eventually humans. The research results of Prof. Lohmann and her team were published in the journal Developmental Cell.


Story Source:

The above story is based on materials provided by Heidelberg, Universität. Note: Materials may be edited for content and length.


Journal Reference:

  1. Fani Papagiannouli, Lisa Schardt, Janin Grajcarek, Nati Ha, Ingrid Lohmann. The Hox Gene Abd-B Controls Stem Cell Niche Function in the Drosophila Testis. Developmental Cell, 2014; 28 (2): 189 DOI: 10.1016/j.devcel.2013.12.016

Cite This Page:

Heidelberg, Universität. "Developmental gene influences sperm formation, fruit fly model demonstrates." ScienceDaily. ScienceDaily, 21 February 2014. <www.sciencedaily.com/releases/2014/02/140221103818.htm>.
Heidelberg, Universität. (2014, February 21). Developmental gene influences sperm formation, fruit fly model demonstrates. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2014/02/140221103818.htm
Heidelberg, Universität. "Developmental gene influences sperm formation, fruit fly model demonstrates." ScienceDaily. www.sciencedaily.com/releases/2014/02/140221103818.htm (accessed August 21, 2014).

Share This




More Health & Medicine News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) — Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Reasons Why Teen Birth Rates Are At An All-Time Low

Reasons Why Teen Birth Rates Are At An All-Time Low

Newsy (Aug. 20, 2014) — A CDC report says birth rates among teenagers have been declining for decades, reaching a new low in 2013. We look at several popular explanations. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins