Featured Research

from universities, journals, and other organizations

Finding a few foes among billions of cellular friends

Date:
February 26, 2014
Source:
University of South Carolina
Summary:
Beating cancer is all about early detection, and new research is another step forward in catching the disease early. A team of chemists is reporting a new way to detect just a handful of lurking tumor cells, which can be outnumbered a billion to one in the bloodstream by healthy cells. The researchers have constructed an ultrasensitive nanoprobe that can electrochemically sense as few as four circulating tumor cells, and it doesn't require any enzymes to produce a detectable signal.

Beating cancer is all about early detection, and new research from the University of South Carolina is another step forward in catching the disease early. A team of chemists is reporting a new way to detect just a handful of lurking tumor cells, which can be outnumbered a billion to one in the bloodstream by healthy cells.

The researchers have constructed an ultrasensitive nanoprobe that can electrochemically sense as few as four circulating tumor cells, and it doesn't require any enzymes to produce a detectable signal.

"That makes it a very robust system," says Hui Wang, a chemist in the university's College of Arts and Sciences who led the research team with South Carolina colleague Qian Wang and Jun-Jie Zhu of Nanjing University. "We show that it's much less sensitive to pH and temperature than the natural enzyme horseradish peroxidase, a traditional means of enhancing sensitivity."

Cancer can metastasize by releasing tumor cells that are capable of spreading the disease to new parts of the body. But the circulating cells also represent a golden opportunity for modern medicine: detecting them in a patient is a telltale sign of a tumor.

They're tough to find, though. In a billion blood cells, there might be just one circulating tumor cell that could trip an alarm.

The enzyme-free detection system is based on the electrochemical properties of Fe3O4 nanoparticles, which since 2007 have been known to mimic the peroxide-reducing capacity of horseradish peroxidase. Wang's team was surprised to find that the nanoparticles could also catalyze the electrochemical reduction of small dye molecules, such as thionine, even in the absence of peroxide.

Wang and his team recently reported in the Journal of the American Chemical Society how they decorated Fe3O4 beads with bimetallic nanocages to create a hybrid electrocatalyst. Circulating tumor cells that were trapped onto an electrode surface with cell-targeting aptamers were detected by cyclic voltammetry of thionine. The system had a wide linear response range and a detection limit down to just a few cells.

There's still a long way to go to get a device into the clinic, but Wang can see the potential of the sturdy inorganic nanoprobes.

"We can actually quantify the biomarkers expressed on cancer cells, and because the expression levels on the cancer cells are quite different from the normal cells, we can actually identify the cancer cells," he says. "Since the sensitivity is really high, if you have low-abundance cancer cells in the body, we should be able to detect them."


Story Source:

The above story is based on materials provided by University of South Carolina. The original article was written by Steven Powell. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tingting Zheng, Qingfeng Zhang, Sheng Feng, Jun-Jie Zhu, Qian Wang, Hui Wang. Robust Nonenzymatic Hybrid Nanoelectrocatalysts for Signal Amplification toward Ultrasensitive Electrochemical Cytosensing. Journal of the American Chemical Society, 2014; 136 (6): 2288 DOI: 10.1021/ja500169y

Cite This Page:

University of South Carolina. "Finding a few foes among billions of cellular friends." ScienceDaily. ScienceDaily, 26 February 2014. <www.sciencedaily.com/releases/2014/02/140226133002.htm>.
University of South Carolina. (2014, February 26). Finding a few foes among billions of cellular friends. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2014/02/140226133002.htm
University of South Carolina. "Finding a few foes among billions of cellular friends." ScienceDaily. www.sciencedaily.com/releases/2014/02/140226133002.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins