Featured Research

from universities, journals, and other organizations

Pumping iron: A hydrogel actuator with mussel tone

Date:
March 5, 2014
Source:
Michigan Technological University
Summary:
Using iron ions and chemistry found in the adhesive proteins of a certain mollusk, scientists have developed a hydrogel actuator that moves when its pH is raised. Hydrogels are soft networks of polymers with high water content, like jello. Because of their soft, gentle texture, they have the potential to interact safely with living tissues and have applications in a number of medical areas, including tissue engineering. The hydrogel moved on its own, bending like an inchworm where the ions had been deposited.

A hydrogel treated with dopamine and iron ions is flat under neutral conditions (top photo) and bends in an alkaline state. Michigan Tech's Bruce P. Lee borrowed chemistry found in the adhesive proteins of mussels, left, to make his hydrogel actuator.
Credit: Image courtesy of Michigan Technological University

Protein from a small, tasty mollusk inspired Michigan Technological University's Bruce P. Lee to invent a new type of hydrogel actuator.

Related Articles


Hydrogels are soft networks of polymers with high water content, like jello. Because of their soft, gentle texture, they have the potential to interact safely with living tissues and have applications in a number of medical areas, including tissue engineering. Lee, an assistant professor of biomedical engineering, wanted to make a hydrogel that wouldn't just sit there.

"Hydrogels that can change shape on command could be used to deliver pharmaceuticals," he said. "We've taken a hydrogel and made it into an actuator: something that can change shape or move, maybe by opening the door for a drug and letting it out."

To make his movable hydrogel, Lee borrowed chemistry from proteins that mussels use to anchor themselves to wet rocks. A component in that protein, DOPA (for 3,4-dihydroxyphenylalanine), has unusual properties shared by its chemical cousin, dopamine, and it was dopamine that Lee incorporated into their hydrogel.

He started with a dopamine-suffused hydrogel shaped like a thick, short stick of gum. Next, he laid an iron rod across it in three places, each time running a charge through the rod to release iron ions onto the hydrogel's surface. Finally, he raised the hydrogel's pH.

The hydrogel moved on its own, bending like an inchworm where the ions had been deposited.

Lee explains: At an acid pH, only one side chain on the dopamine molecules attaches to the iron ions. "But if you raise the pH, three dopamine side chains converge to grab the one ion," he said. "That makes all the molecules come together, so the hydrogel shrinks in that spot, causing it to bend where the ions are."

A hydrogel could be programmed to adopt all manner of shapes by changing the placement of the ions, the composition of the hydrogel and the voltage. You can also remove the ions and reintroduce them in a different pattern, so that the same hydrogel can be reprogrammed to transform into a different shape.

"You can make it almost like a claw, so at some point it might even be able to pick things up," Lee said. "The body is slightly alkaline, so perhaps it could be loaded with a drug and introduced into the body, where it could release the drug. And maybe it could be designed to respond to other stimuli, like temperature."

Other scientists have used metal ions to make hydrogel actuators, but no one has used chemistry found in mussel adhesive proteins. Lee hopes to follow up on his initial discovery.

"Right now, our hydrogel actuator is slow and takes some time to bend," he said. "We need to study it more, and we also want to try it with other ions, like titanium and copper."


Story Source:

The above story is based on materials provided by Michigan Technological University. The original article was written by Marcia Goodrich. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bruce P. Lee, Shari Konst. Novel Hydrogel Actuator Inspired by Reversible Mussel Adhesive Protein Chemistry. Advanced Materials, 2014; DOI: 10.1002/adma.201306137

Cite This Page:

Michigan Technological University. "Pumping iron: A hydrogel actuator with mussel tone." ScienceDaily. ScienceDaily, 5 March 2014. <www.sciencedaily.com/releases/2014/03/140305191515.htm>.
Michigan Technological University. (2014, March 5). Pumping iron: A hydrogel actuator with mussel tone. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2014/03/140305191515.htm
Michigan Technological University. "Pumping iron: A hydrogel actuator with mussel tone." ScienceDaily. www.sciencedaily.com/releases/2014/03/140305191515.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins