Featured Research

from universities, journals, and other organizations

Seeing double: New study explains evolution of duplicate genes

Date:
April 7, 2014
Source:
Georgia Institute of Technology
Summary:
From time to time, living cells will accidently make an extra copy of a gene during the normal replication process. Throughout the history of life, evolution has molded some of these seemingly superfluous genes into a source of genetic novelty, adaptation and diversity. A new study shows one way that some duplicate genes could have long-ago escaped elimination from the genome, leading to the genetic innovation seen in modern life.

From time to time, living cells will accidentally make an extra copy of a gene during the normal replication process. Throughout the history of life, evolution has molded some of these seemingly superfluous genes into a source of genetic novelty, adaptation and diversity. A new study shows one way that some duplicate genes could have long-ago escaped elimination from the genome, leading to the genetic innovation seen in modern life.

Related Articles


Researchers have shown that a process called DNA methylation can shield duplicate genes from being removed from the genome during natural selection. The redundant genes survive and are shaped by evolution over time, giving birth to new cellular functions.

"This is the first study to show explicitly how the processes of DNA methylation and duplicate gene evolution are related," said Soojin Yi, an associate professor in School of Biology and the Parker H. Petit Institute for Bioengineering and Bioscience at the Georgia Institute of Technology.

The study was sponsored by the National Science Foundation (NSF) and was scheduled to be published the week of April 7 in the Online Early Edition of the journal Proceedings of the National Academy of Sciences (PNAS).

At least half of the genes in the human genome are duplicates. Duplicate genes are not only redundant, but they can be bad for cells. Most duplicate genes accumulate mutations at high rates, which increases the chance that the extra gene copies will become inactive and lost over time due to natural selection.

The new study found that soon after some duplicate genes form, small hydrocarbons called methyl groups attach to a duplicate gene's regulatory region and block the gene from turning on.

When a gene is methylated, it is shielded from natural selection, which allows the gene to hang around in the genome long enough for evolution to find a new use for it. Some young duplicate genes are silenced by methylation almost immediately after being formed, the study found.

"What we have done is the first step in the process to show that young gene duplicates seems to be heavily methylated," Yi said.

The study showed that the average level of DNA methylation on the duplicate gene regulatory region is significantly negatively correlated with evolutionary time. So, younger duplicate genes have high levels of DNA methylation.

For about three-quarters of the duplicate gene pairs studied, the gene in a pair that was more methylated was always more methylated across all 10 human tissues studied, said Thomas Keller, a post-doctoral fellow at Georgia Tech and the study's first author. "For the tissues that we examined, there was remarkable consistency in methylation when we looked at duplicate gene pairs," Keller said.

The computational study constructed a dataset of all human gene duplicates by comparing each sequence against every other sequence in the human genome. DNA methylation data was then obtained for the 10 different human tissues. The researchers used computer models to analyze the links between DNA methylation and gene duplication.

The human brain is one example of a tissue for which gene duplication has been particularly important for its evolution. In future studies, the researchers will examine the link between epigenetic evolution and human brain evolution.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Thomas E. Keller, et al. DNA Methylation and Evolution of Duplicate Genes. PNAS, 2014 DOI: 10.1073/pnas.1321420111

Cite This Page:

Georgia Institute of Technology. "Seeing double: New study explains evolution of duplicate genes." ScienceDaily. ScienceDaily, 7 April 2014. <www.sciencedaily.com/releases/2014/04/140407153806.htm>.
Georgia Institute of Technology. (2014, April 7). Seeing double: New study explains evolution of duplicate genes. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2014/04/140407153806.htm
Georgia Institute of Technology. "Seeing double: New study explains evolution of duplicate genes." ScienceDaily. www.sciencedaily.com/releases/2014/04/140407153806.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Fossils & Ruins News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com
Domestication Might've Been Bad For Horses

Domestication Might've Been Bad For Horses

Newsy (Dec. 16, 2014) A group of scientists looked at the genetics behind the domestication of the horse and showed how human manipulation changed horses' DNA. Video provided by Newsy
Powered by NewsLook.com
Mozart, Beethoven, Shubert and Bizet Manuscripts to Go on Sale

Mozart, Beethoven, Shubert and Bizet Manuscripts to Go on Sale

AFP (Dec. 16, 2014) A collection of rare manuscripts by composers Mozart, Beethoven, Shubert and Bizet are due to go on sale at auction on December 17. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com
Old Ship Records to Shed Light on Arctic Ice Loss

Old Ship Records to Shed Light on Arctic Ice Loss

Reuters - Innovations Video Online (Dec. 15, 2014) Researchers are looking to the past to gain a clearer picture of what the future holds for ice in the Arctic. A project to analyse and digitize ship logs dating back to the 1850's aims to lengthen the timeline of recorded ice data. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins