Featured Research

from universities, journals, and other organizations

Novel compound halts cocaine addiction, relapse behaviors

Date:
April 23, 2014
Source:
University at Buffalo
Summary:
A novel compound that targets an important brain receptor has a dramatic effect against a host of cocaine addiction behaviors, including relapse behavior, an animal study has found. The research provides strong evidence that this may be a novel lead compound for treating cocaine addiction, for which no effective medications exist.

New research published by Jun-Xu Li in the UB Department of Pharmacology and Toxicology and his colleagues demonstrates that a novel compound dramatically blocked cocaine’s rewarding effects and markedly blunted cocaine relapse in animals.
Credit: Image courtesy of University at Buffalo

A novel compound that targets an important brain receptor has a dramatic effect against a host of cocaine addiction behaviors, including relapse behavior, a University at Buffalo animal study has found.

The research provides strong evidence that this may be a novel lead compound for treating cocaine addiction, for which no effective medications exist.

The UB research was published as an online preview article in Neuropsychopharmacology last week.

In the study, the compound, RO5263397, severely blunted a broad range of cocaine addiction behaviors.

"This is the first systematic study to convincingly show that RO5263397 has the potential to treat cocaine addiction," said Jun-Xu Li, MD, PhD, senior author and assistant professor of pharmacology and toxicology in the UB School of Medicine and Biomedical Sciences.

"Our research shows that trace amine associated receptor 1 -- TAAR 1 -- holds great promise as a novel drug target for the development of novel medications for cocaine addiction," he said.

TAAR 1 is a novel receptor in the brain that is activated by minute amounts of brain chemicals called trace amines.

The findings are especially important, Li added, since despite many years of research, there are no effective medications for treating cocaine addiction.

The compound targets TAAR 1, which is expressed in key drug reward and addiction regions of the brain.

"Because TAAR 1 anatomically and neurochemically is closely related to dopamine -- one of the key molecules in the brain that contributes to cocaine addiction -- and is thought to be a 'brake' on dopamine activity, drugs that stimulate TAAR 1 may be able to counteract cocaine addiction," Li explained.

The UB research tested this hypothesis by using a newly developed TAAR 1 agonist RO5263397, a drug that stimulates TAAR 1 receptors, in animal models of human cocaine abuse.

One of the ways that researchers test the rewarding effects of cocaine in animals is called conditioned place preference. In this type of test, the animal's persistence in returning to, or staying at, a physical location where the drug was given, is interpreted as indicating that the drug has rewarding effects.

In the UB study, RO5263397 dramatically blocked cocaine's rewarding effects.

"When we give the rats RO5263397, they no longer perceive cocaine rewarding, suggesting that the primary effect that drives cocaine addiction in humans has been blunted," said Li.

The compound also markedly blunted cocaine relapse in the animals.

"Cocaine users often stay clean for some time, but may relapse when they re-experience cocaine or hang out in the old cocaine use environments," said Li. "We found that RO5263397 markedly blocked the effect of cocaine or cocaine-related cues for priming relapse behavior.

"Also, when we measured how hard the animals are willing to work to get an injection of cocaine, RO5263397 reduced the animals' motivation to get cocaine," said Li. "This compound makes rats less willing to work for cocaine, which led to decreased cocaine use."


Story Source:

The above story is based on materials provided by University at Buffalo. The original article was written by Ellen Goldbaum. Note: Materials may be edited for content and length.


Journal Reference:

  1. David A Thorn, Li Jing, Yanyan Qiu, Amy M Gancarz-Kausch, Chad M Galuska, David M Dietz, Yanan Zhang, Jun-Xu Li. Effects of the Trace Amine Associated Receptor 1 Agonist RO5263397 on Abuse-Related Effects of Cocaine in Rats. Neuropsychopharmacology, 2014; DOI: 10.1038/npp.2014.91

Cite This Page:

University at Buffalo. "Novel compound halts cocaine addiction, relapse behaviors." ScienceDaily. ScienceDaily, 23 April 2014. <www.sciencedaily.com/releases/2014/04/140423132618.htm>.
University at Buffalo. (2014, April 23). Novel compound halts cocaine addiction, relapse behaviors. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2014/04/140423132618.htm
University at Buffalo. "Novel compound halts cocaine addiction, relapse behaviors." ScienceDaily. www.sciencedaily.com/releases/2014/04/140423132618.htm (accessed August 30, 2014).

Share This




More Mind & Brain News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com
Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins