Featured Research

from universities, journals, and other organizations

Beer brewing waste could help bone regeneration

Date:
June 9, 2014
Source:
Universidad Politécnica de Madrid
Summary:
Biomaterials for bone regeneration have been developed by researchers from beer brewing waste. The waste obtained from the beer brewing process contains the main chemical components found in bones (phosphorus, calcium, magnesium and silica), that after undergoing modification processes, this waste can be used as support or scaffold to promote bone regeneration for medical applications such as coating prosthesis or bone grafts, researchers report.

A biomaterial used as a matrix for bone regeneration and made by a porous block of 1 cm height which was obtained from the beer bagasse treatment.
Credit: Angeles Martín Luengo, Malcolm Yates and Eduardo Sáez, ICMM-CSIC and ICP-CSIC

Researchers at the UPM and the CSIC have developed biomaterials for bone regeneration from beer brewing waste.

Related Articles


As a result of a research study conducted by researchers from the Centre for Biomedical Technology of Universidad Politécnica de Madrid (UPM) and the Institute of Materials Science and the Institute of Catalysis and Petrochemistry of Consejo Superior de Investigaciones Científicas (CSIC), all in collaboration with the Mahou and Createch Co., have developed biocompatible materials to be used as support for bone regeneration from the food industry waste, mainly bagasse (residue) from beer brewing. These new materials can be considered as an alternative to the prosthesis made from processed sheep bones or synthetic materials which are more expensive and more harmful to the environment.

The waste obtained from the beer brewing process contains the main chemical components found in bones (phosphorus, calcium, magnesium and silica), that after undergoing modification processes, this waste can be used as support or scaffold to promote bone regeneration for medical applications such as coating prosthesis or bone grafts. The waste usage from the food industry is a great source of raw material recovery rich in chemical diversity, and simultaneously it can reduce the impact generated by the accumulation of waste in the environment

So far, the usage of synthetic materials as bone substitutes is the most used therapy for treatment of bone diseases. The therapeutic strategies are based on stiff porous scaffolds made of biocompatible materials to be used as molds. These molds will provide mechanical stability and will promote the growth of the new bone tissue that helps its regeneration.

The synthetic calcium phosphates are frequently used as matrices and coatings for orthopedic implants because of their resemblance to the composition of a bone. These materials are often obtained through chemical reactions of complex synthesis that use toxic reagents (for example benzoyl peroxides benzene and aniline) and calcinations at high temperatures close to 1500 ° C. As a result of this process, we obtain bioceramics but just after adding silicon through the hydrolysis of TEOS and sintering over 1,100 ° C.

The billing of the brewing sector was €2,990 million in 2012, almost covering completely the total production of malt and hops in the country. The most common products in the production process are bagasse, yeast and malt dried residues.

Bagasse is constituted by organic waste from malt, never experiencing modifications afterwards. This is the reason why bagasse is considered a subproduct, commonly used to make fodder and it is inexpensive. The treatments applied to bagasse residue in this research give as a result a new material rich in silicon, phosphorus, calcium and magnesium. The analysis of this new material shows the presence of interconnected pores of between 50 and 500 microns in diameter which is similar to the porosity of cancellous bone. All this would facilitate the complete vascularization after the bone implant.

A first approach using cell cultures has established the biocompatibility of the materials by analyzing the cell viability of cultured osteoblasts in the presence of powder materials components. Then, after compacting and sintering the materials that became 3D solid matrixes, the ability of bone-like cells to adhere to these materials were analyzed. Also, researchers analyzed how these materials proliferate and distinguish from the mature bone cells which are able to express typical markers of bone phenotype such as alkaline phosphatase and to conduct the collagen synthesis and mineralization of the extracellular matrix.


Story Source:

The above story is based on materials provided by Universidad Politécnica de Madrid. Note: Materials may be edited for content and length.


Journal Reference:

  1. Eduardo Saez Rojo, Milagros Ramos, Malcolm Yates, Ma Angeles Martin-Luengo, Ana Maria Martínez Serrano, Ana Civantos, Jose Luis López-Lacomba, Gwendolen Reilly, Chris Vervaet, Jaume Lluis Tarterra, Benet Fité Luis, Lorena Vega Argomaniz. Preparation, characterization and in vitro osteoblast growth of waste-derived biomaterials. RSC Advances, 2014; 4 (25): 12630 DOI: 10.1039/c3ra47534d

Cite This Page:

Universidad Politécnica de Madrid. "Beer brewing waste could help bone regeneration." ScienceDaily. ScienceDaily, 9 June 2014. <www.sciencedaily.com/releases/2014/06/140609093822.htm>.
Universidad Politécnica de Madrid. (2014, June 9). Beer brewing waste could help bone regeneration. ScienceDaily. Retrieved April 2, 2015 from www.sciencedaily.com/releases/2014/06/140609093822.htm
Universidad Politécnica de Madrid. "Beer brewing waste could help bone regeneration." ScienceDaily. www.sciencedaily.com/releases/2014/06/140609093822.htm (accessed April 2, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, April 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Reuters - Innovations Video Online (Apr. 1, 2015) — Israeli scientists says laser bonding of tissue allows much faster healing and less scarring. Amy Pollock has more. Video provided by Reuters
Powered by NewsLook.com
Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

AFP (Apr. 1, 2015) — The governments of Liberia and Sierra Leone have been busy fighting the menace created by the deadly Ebola virus, but illicit drug lords have taken advantage of the situation to advance the drug trade. Duration: 01:12 Video provided by AFP
Powered by NewsLook.com
Stigma Stalks India's Leprosy Sufferers as Disease Returns

Stigma Stalks India's Leprosy Sufferers as Disease Returns

AFP (Apr. 1, 2015) — The Indian government declared victory over leprosy in 2005, but the disease is making a comeback in some parts of the country, with more than a hundred thousand lepers still living in colonies, shunned from society. Duration: 02:41 Video provided by AFP
Powered by NewsLook.com
7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) — Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins