Featured Research

from universities, journals, and other organizations

Beer brewing waste could help bone regeneration

Date:
June 9, 2014
Source:
Universidad Politécnica de Madrid
Summary:
Biomaterials for bone regeneration have been developed by researchers from beer brewing waste. The waste obtained from the beer brewing process contains the main chemical components found in bones (phosphorus, calcium, magnesium and silica), that after undergoing modification processes, this waste can be used as support or scaffold to promote bone regeneration for medical applications such as coating prosthesis or bone grafts, researchers report.

A biomaterial used as a matrix for bone regeneration and made by a porous block of 1 cm height which was obtained from the beer bagasse treatment.
Credit: Angeles Martín Luengo, Malcolm Yates and Eduardo Sáez, ICMM-CSIC and ICP-CSIC

Researchers at the UPM and the CSIC have developed biomaterials for bone regeneration from beer brewing waste.

Related Articles


As a result of a research study conducted by researchers from the Centre for Biomedical Technology of Universidad Politécnica de Madrid (UPM) and the Institute of Materials Science and the Institute of Catalysis and Petrochemistry of Consejo Superior de Investigaciones Científicas (CSIC), all in collaboration with the Mahou and Createch Co., have developed biocompatible materials to be used as support for bone regeneration from the food industry waste, mainly bagasse (residue) from beer brewing. These new materials can be considered as an alternative to the prosthesis made from processed sheep bones or synthetic materials which are more expensive and more harmful to the environment.

The waste obtained from the beer brewing process contains the main chemical components found in bones (phosphorus, calcium, magnesium and silica), that after undergoing modification processes, this waste can be used as support or scaffold to promote bone regeneration for medical applications such as coating prosthesis or bone grafts. The waste usage from the food industry is a great source of raw material recovery rich in chemical diversity, and simultaneously it can reduce the impact generated by the accumulation of waste in the environment

So far, the usage of synthetic materials as bone substitutes is the most used therapy for treatment of bone diseases. The therapeutic strategies are based on stiff porous scaffolds made of biocompatible materials to be used as molds. These molds will provide mechanical stability and will promote the growth of the new bone tissue that helps its regeneration.

The synthetic calcium phosphates are frequently used as matrices and coatings for orthopedic implants because of their resemblance to the composition of a bone. These materials are often obtained through chemical reactions of complex synthesis that use toxic reagents (for example benzoyl peroxides benzene and aniline) and calcinations at high temperatures close to 1500 ° C. As a result of this process, we obtain bioceramics but just after adding silicon through the hydrolysis of TEOS and sintering over 1,100 ° C.

The billing of the brewing sector was €2,990 million in 2012, almost covering completely the total production of malt and hops in the country. The most common products in the production process are bagasse, yeast and malt dried residues.

Bagasse is constituted by organic waste from malt, never experiencing modifications afterwards. This is the reason why bagasse is considered a subproduct, commonly used to make fodder and it is inexpensive. The treatments applied to bagasse residue in this research give as a result a new material rich in silicon, phosphorus, calcium and magnesium. The analysis of this new material shows the presence of interconnected pores of between 50 and 500 microns in diameter which is similar to the porosity of cancellous bone. All this would facilitate the complete vascularization after the bone implant.

A first approach using cell cultures has established the biocompatibility of the materials by analyzing the cell viability of cultured osteoblasts in the presence of powder materials components. Then, after compacting and sintering the materials that became 3D solid matrixes, the ability of bone-like cells to adhere to these materials were analyzed. Also, researchers analyzed how these materials proliferate and distinguish from the mature bone cells which are able to express typical markers of bone phenotype such as alkaline phosphatase and to conduct the collagen synthesis and mineralization of the extracellular matrix.


Story Source:

The above story is based on materials provided by Universidad Politécnica de Madrid. Note: Materials may be edited for content and length.


Journal Reference:

  1. Eduardo Saez Rojo, Milagros Ramos, Malcolm Yates, Ma Angeles Martin-Luengo, Ana Maria Martínez Serrano, Ana Civantos, Jose Luis López-Lacomba, Gwendolen Reilly, Chris Vervaet, Jaume Lluis Tarterra, Benet Fité Luis, Lorena Vega Argomaniz. Preparation, characterization and in vitro osteoblast growth of waste-derived biomaterials. RSC Advances, 2014; 4 (25): 12630 DOI: 10.1039/c3ra47534d

Cite This Page:

Universidad Politécnica de Madrid. "Beer brewing waste could help bone regeneration." ScienceDaily. ScienceDaily, 9 June 2014. <www.sciencedaily.com/releases/2014/06/140609093822.htm>.
Universidad Politécnica de Madrid. (2014, June 9). Beer brewing waste could help bone regeneration. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/06/140609093822.htm
Universidad Politécnica de Madrid. "Beer brewing waste could help bone regeneration." ScienceDaily. www.sciencedaily.com/releases/2014/06/140609093822.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) — Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins