Featured Research

from universities, journals, and other organizations

Scientists find trigger to decode the genome

Date:
June 12, 2014
Source:
University of Manchester
Summary:
An important trigger that dictates how cells change their identity and gain specialized functions has been decoded by scientists. The scientists have found out how embryonic stem cell fate is controlled which will lead to future research into how cells can be artificially manipulated. "We believe that our research will help to make regenerative medicine more effective and reliable because we'll be able to gain control and manipulate cells -- thus our understanding of the regulatory events within a cell shed light on how to decode the genome," concluded the lead author.

Scientists from The University of Manchester have identified an important trigger that dictates how cells change their identity and gain specialized functions.

Related Articles


And the research, published in Cell Reports, has brought them a step closer to being able to decode the genome.

The scientists have found out how embryonic stem cell fate is controlled which will lead to future research into how cells can be artificially manipulated.

Lead author Andrew Sharrocks, Professor in Molecular Biology at The University of Manchester, said: "Understanding how to manipulate cells is crucial in the field of regenerative medicine which aims to repair or replace damaged or diseased human cells or tissues to restore normal function."

During the research the team focused on the part of the cellular genome that gives a gene its expression known as the 'enhancer'. This controls the conversion of DNA from genes into useful information that provides the building blocks that determine the structure and function of our cells.

Different enhancers are active in different cell types, allowing the production of distinct gene products and hence a range of alternative cell types. In the current study, the team have determined how these enhancers become active.

Professor Sharrocks said: "All of us develop into complex human beings containing millions of cells from a single cell created by fertilization of an egg. To transit from this single cell state, cells must divide and eventually change their identity and gain specialised functions. For example we need specific types of cells to populate our brains, and our recent work has uncovered the early steps in the creation of these types of cells.

"One of the most exciting areas of regenerative medicine is the newly acquired ability to be able to manipulate cell fate and derive new cells to replace those which might be damaged or lost, either through old age or injury. To do this, we need to use molecular techniques to manipulate stem cells which have the potential to turn into any cell in our bodies."

But one of the current drawbacks in the field of regenerative medicine is that the approaches are relatively inefficient, partly because scientists do not fully understand the basic principles which control cell fate determination.

"We believe that our research will help to make regenerative medicine more effective and reliable because we'll be able to gain control and manipulate cells -- thus our understanding of the regulatory events within a cell shed light on how to decode the genome," concluded Professor Sharrocks.


Story Source:

The above story is based on materials provided by University of Manchester. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shen-Hsi Yang, Tόzer Kalkan, Claire Morissroe, Hendrik Marks, Hendrik Stunnenberg, Austin Smith, Andrew D. Sharrocks. Otx2 and Oct4 Drive Early Enhancer Activation during Embryonic Stem Cell Transition from Naive Pluripotency. Cell Reports, 2014; DOI: 10.1016/j.celrep.2014.05.037

Cite This Page:

University of Manchester. "Scientists find trigger to decode the genome." ScienceDaily. ScienceDaily, 12 June 2014. <www.sciencedaily.com/releases/2014/06/140612121356.htm>.
University of Manchester. (2014, June 12). Scientists find trigger to decode the genome. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2014/06/140612121356.htm
University of Manchester. "Scientists find trigger to decode the genome." ScienceDaily. www.sciencedaily.com/releases/2014/06/140612121356.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) — The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) — Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) — Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins