Featured Research

from universities, journals, and other organizations

Enlightening cancer cells with optogenetics

Date:
July 1, 2014
Source:
Medical University of Vienna
Summary:
The first application of optogenetics to cancer research has been conducted on engineered cell surface receptors activated by light, researchers report. Small algal protein domains serve as synthetic light sensors in human cells.

Activation of selected human cells with high spatial precision. Illumination of human cells in freely-designed patterns (here depicting the letters IST) demonstrates the new ability to control selected cells among many other cells. Notably, all cells are genetically identical and differ only whether light was applied to them or not. Here, spatial activation of a reporter gene in HEK293 cells was triggered with light-activated receptor tyrosine kinases. Scale bar: 10 mm. (Illustration quality enhanced).
Credit: Image courtesy of Medical University of Vienna

Harald Janovjak, Assistant Professor at IST Austria, together with Michael Grusch, Associate Professor at the Institute of Cancer Research of the Medical University of Vienna, "remote-controlled" the behaviour of cancer cells with light, as reported this week in EMBO Journal. This work is the first application of the new field of optogenetics to cancer research.

Related Articles


To understand the dynamics of cellular signaling, researchers need to activate and inactivate membrane receptor proteins, which serve as relays between a cell's outside and inside world. Ideally, this activation occurs on short timescales (seconds to minutes) and in targeted locations (micrometers to millimeters). However, such a high level of precision in activation cannot be achieved with current pharmacological and genetic methods. Optogenetics uses light to control cell activity, and has the advantage that light can be applied and removed precisely both in space and time. Janovjak, Grusch and colleagues re-engineered receptor tyrosine kinases (RTKs), essential cell surface receptors that sense growth factors and hormones, to be under the control of light.

When a signaling molecule binds to RTKs at the cell surface, two receptors bind to each other in a process called dimerization. This process activates signaling in the cell. Janovjak, Grusch and colleagues linked those parts of mammalian RTKs that activate cell signaling to a light-oxygen-voltage-sensing domain, a reversible light sensor that they identified in a yellow-green alga. In the engineered receptors, the dimerization step and subsequently cell signaling can now be turned on and off by light as the algal proteins sense light and bind to each other. In cancer cells, activation of the engineered receptors causes changes in cell morphology, proliferation and gene expression, characteristic of increased cancer malignancy. In blood cells, activation leads to cell sprouting, typical of the formation of new blood vessels.

The development of RTKs regulated through light-activated dimerization by Janovjak and Grusch is the first instance of light-activated dimerization of mammalian receptors. The engineered receptors can be precisely controlled by a light intensity easily achieved in microscopes and in animal models. The newly developed receptors trigger complex cellular programs in both cancer and blood endothelial cells. These cells represent new models in which behavior is under light control and which can, for instance, be used for new methods to identify drugs. In contrast to cancer, where uncontrolled activation of cell signaling results in features linked to malignancy, light activation of signaling may rescue cell survival and function in degenerative disease.


Story Source:

The above story is based on materials provided by Medical University of Vienna. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael Grusch, Karin Schelch, Robert Riedler, Eva Reichhart, Christopher Differ, Walter Berger, Αlvaro Inglιs‐Prieto, Harald Janovjak. Spatio‐temporally precise activation of engineered receptor tyrosine kinases by light. EMBO Journal, July 2014 DOI: 10.15252/embj.201387695

Cite This Page:

Medical University of Vienna. "Enlightening cancer cells with optogenetics." ScienceDaily. ScienceDaily, 1 July 2014. <www.sciencedaily.com/releases/2014/07/140701101357.htm>.
Medical University of Vienna. (2014, July 1). Enlightening cancer cells with optogenetics. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2014/07/140701101357.htm
Medical University of Vienna. "Enlightening cancer cells with optogenetics." ScienceDaily. www.sciencedaily.com/releases/2014/07/140701101357.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Magnetic Motors, Not Cables, Power This Elevator

Magnetic Motors, Not Cables, Power This Elevator

Newsy (Nov. 28, 2014) — Imagine an elevator without cables. ThyssenKrupp has drafted an elevator concept that would cruise on linear magnetic motors. Video provided by Newsy
Powered by NewsLook.com
NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins