Featured Research

from universities, journals, and other organizations

More than just X and Y: New genetic basis for sex determination

Date:
August 18, 2014
Source:
Cold Spring Harbor Laboratory
Summary:
Men and women differ in obvious ways, and scientists have long known that genetic differences buried deep within our DNA underlie these distinctions. In the past, most research has focused on understanding how the genes that encode proteins act as sex determinants. But scientists have found that a subset of very small genes encoding short RNA molecules, called microRNAs, also play a key role in differentiating male and female tissues in the fruit fly.

Cold Spring Harbor Laboratory researchers have found that miRNAs, short RNA molecules, are responsible for sexual differences in fruit flies. Shown here are testes from a male fruit fly where a hormone that controls a key miRNA has been inactivated. The abnormal testes fail to make sperm. They now produce sex determinants (shown in red) that are found in the ovaries of female flies.
Credit: D. Fagegaltier/ Cold Spring Harbor Laboratory

Men and women differ in plenty of obvious ways, and scientists have long known that genetic differences buried deep within our DNA underlie these distinctions. In the past, most research has focused on understanding how the genes that encode proteins act as sex determinants. But Cold Spring Harbor Laboratory (CSHL) scientists have found that a subset of very small genes encoding short RNA molecules, called microRNAs (miRNAs), also play a key role in differentiating male and female tissues in the fruit fly.

Related Articles


A miRNA is a short segment of RNA that fine-tunes the activation of one or several protein-coding genes. miRNAs are able to silence the genes they target and, in doing so, orchestrate complex genetic programs that are the basis of development.

In work published in Genetics, a team of CSHL researchers and colleagues describe how miRNAs contribute to sexual differences in fruit flies. You've probably never noticed, but male and female flies differ visibly, just like other animals. For example, females are 25% larger than males with lighter pigmentation and more abdominal segments.

The team of researchers, including Delphine Fagegaltier, PhD, lead author on the study, and CSHL Professor and Howard Hughes Medical Institute Investigator Greg Hannon, identified distinct miRNA populations in male and female flies. "We found that the differences in miRNAs are important in shaping the structures that distinguish the two sexes," says Fagegaltier. "In fact, miRNAs regulate the very proteins that act as sex determinants during development."

The team found that miRNAs are essential for sex determination even after an animal has grown to adulthood. "They send signals that allow germ cells, i.e., eggs and sperm, to develop, ensuring fertility," Fagegaltier explains. "Removing one miRNA from mature, adult flies causes infertility." More than that, these flies begin to produce both male and female sex-determinants. "In a sense, once they have lost this miRNA, the flies become male and female at the same time," according to Fagegaltier. "It is amazing that the very smallest genes can have such a big effect on sexual identity."

Some miRNAs examined in the study, such as let-7, have been preserved by evolution because of their utility; humans and many other animals carry versions of them. "This is probably just the tip of the iceberg," says Fagegaltier. "There are likely many more miRNAs regulating sexual identity at the cellular and tissue level, but we still have a lot to learn about these differences in humans, and how they could contribute to developmental defects and disease."


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Fagegaltier, A. Konig, A. Gordon, E. C. Lai, T. R. Gingeras, G. J. Hannon, H. R. Shcherbata. A Genome-Wide Survey of Sexually Dimorphic Expression of Drosophila miRNAs Identifies the Steroid Hormone-Induced miRNA let-7 as a Regulator of Sexual Identity. Genetics, 2014; DOI: 10.1534/genetics.114.169268

Cite This Page:

Cold Spring Harbor Laboratory. "More than just X and Y: New genetic basis for sex determination." ScienceDaily. ScienceDaily, 18 August 2014. <www.sciencedaily.com/releases/2014/08/140818153601.htm>.
Cold Spring Harbor Laboratory. (2014, August 18). More than just X and Y: New genetic basis for sex determination. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2014/08/140818153601.htm
Cold Spring Harbor Laboratory. "More than just X and Y: New genetic basis for sex determination." ScienceDaily. www.sciencedaily.com/releases/2014/08/140818153601.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins