Featured Research

from universities, journals, and other organizations

The mystery of cell proliferation: Matching histone to DNA

Date:
August 19, 2014
Source:
Okinawa Institute of Science and Technology - OIST
Summary:
Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply at the same moment that the cell doubles its DNA. If the amount of histones does not increase when the DNA doubles, the centimeters of new DNA could never be packed small enough to fit into chromosomes, which are just a few micrometers long. In the early stage of development, the period when DNA doubles and the cell divides is called proliferation, after which an embryo grows from one cell to more than one thousand cells.

This figure shows the differences between a wild type zebrafish, labeled wt, and the SLBP mutant used in this experiment, labeled rw440. Moving from left to right, the images show the embryo at 3, 4, and 5 days post fertilization, or dpf. In the top row, the wild type fish retina forms different types of retinal cells, which assemble into neat layers. The wild type fish’s retinal ganglion cells form a clear channel leaving the eye for their axons to carry messages to the brain. On the bottom row, the mutant fish retina shows fewer types of cells, with delayed layering and no clear way for signals to reach the brain.
Credit: Image courtesy of Okinawa Institute of Science and Technology - OIST

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply at the same moment that the cell doubles its DNA. If the amount of histones does not increase when the DNA doubles, the centimeters of new DNA could never be packed small enough to fit into chromosomes, which are just a few micrometers long. In the early stage of development, the period when DNA doubles and the cell divides is called proliferation, after which an embryo grows from one cell to more than one thousand cells. Eventually, the new cells will differentiate into specific tissues. Even though cell proliferation is common in all tissue development, researchers do not fully understand how the amount of histone proteins increases in proportion to the amount of DNA during cell proliferation.

Professor Ichiro Masai, who heads the Okinawa Institute of Science and Technology Graduate University’s Developmental Neurobiology Unit, has spent years screening zebrafish with developmental mutations to understand cell division and differentiation. In this study, Masai and his lab identified one zebrafish strain carrying a mutation in the stem-loop binding protein, or SLBP. Previously, researchers identified SLBP as a key factor regulating the level of histones usingin vitrostudies, in cultured cells. Using zebrafish as a vertebrate animal model, Masai has shown that SLBP is necessary for development to function properly. Masai’s results, the first to show SLBP functionin vivo, were published August 5, 2014 inDevelopmental Biology.

“I wanted to understand the cell differentiation process,” explained Masai. One might expect that a zebrafish without a fully functional SLBP gene would simply die, since the embryo would never be able to undergo cell division and pass the one-cell stage. But this is not the case; somehow the fish bypass the SLBP pathway, continuing proliferation so that the embryo can survive. Masai focused on the zebrafish’s retina to compare development between the mutant strain and the normally functioning, wild type strain. In the SLBP mutant embryos, retinal cells proliferate much more slowly than wild type embryos, and differentiate into fewer types of cells. The mutant embryos form less orderly layers of retinal tissue, making it difficult for signals to travel from light sensitive photoreceptors through the network of neurons in the retina. Finally, the mutant embryo’s retinal axon, which should carry visual signals from the retina to the brain, never exits the eye. Even if the mutant fish’s photoreceptors can interpret light, the light signals would never reach the brain.

Masai’s findings impact more than just a few zebrafish. Zebrafish SLBP is homologous to human SLBP, meaning that despite how distantly related humans and zebrafish are, the genetic sequences look very similar and the protein appears to function in the same way. “The development issues we see in zebrafish could be happening in humans,” said Masai, “but we would not know because we cannot take out a human eye to examine it.”

Furthermore, researchers have seen issues in cell division in many types of cancer. Specifically, the cell division issues occur during chromatin segregation, that mystery moment after the cell doubles its DNA and before it splits into two new cells. SLBP mutants in invertebrate animals showed defects in chromatin segregation, so Masai and his colleagues think that studying the protein in zebrafish could provide more insight.

Without a complete understanding of the genes regulating cell proliferation, division, and differentiation, no one can say exactly what goes awry in cancerous cells. Masai is taking the first steps to learn which genes are involved and how they work, one zebrafish at a time.


Story Source:

The above story is based on materials provided by Okinawa Institute of Science and Technology - OIST. Note: Materials may be edited for content and length.


Journal Reference:

  1. Fumiyasu Imai, Asuka Yoshizawa, Ayako Matsuzaki, Eri Oguri, Masato Araragi, Yuko Nishiwaki, Ichiro Masai. Stem-loop binding protein is required for retinal cell proliferation, neurogenesis, and intraretinal axon pathfinding in zebrafish. Developmental Biology, 2014; DOI: 10.1016/j.ydbio.2014.07.020

Cite This Page:

Okinawa Institute of Science and Technology - OIST. "The mystery of cell proliferation: Matching histone to DNA." ScienceDaily. ScienceDaily, 19 August 2014. <www.sciencedaily.com/releases/2014/08/140819083211.htm>.
Okinawa Institute of Science and Technology - OIST. (2014, August 19). The mystery of cell proliferation: Matching histone to DNA. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2014/08/140819083211.htm
Okinawa Institute of Science and Technology - OIST. "The mystery of cell proliferation: Matching histone to DNA." ScienceDaily. www.sciencedaily.com/releases/2014/08/140819083211.htm (accessed October 23, 2014).

Share This



More Plants & Animals News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Working Mother DIY: Pumpkin Pom-Pom

Working Mother DIY: Pumpkin Pom-Pom

Working Mother (Oct. 22, 2014) How to make a pumpkin pom-pom. Video provided by Working Mother
Powered by NewsLook.com
Goofy Dinosaur Blends Barney and Jar Jar Binks

Goofy Dinosaur Blends Barney and Jar Jar Binks

AP (Oct. 22, 2014) A collection of dinosaur bones reveal a creature that is far more weird and goofy-looking than scientists originally thought when they found just the arm bones nearly 50 years ago, according to a new report in the journal Nature. (Oct. 22) Video provided by AP
Powered by NewsLook.com
San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

Reuters - Light News Video Online (Oct. 22, 2014) The pair of rare white northern rhinos bring hope for their species as only six remain in the world. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Bear Cub Strolls Through Oregon Drug Store

Raw: Bear Cub Strolls Through Oregon Drug Store

AP (Oct. 22, 2014) Shoppers at an Oregon drug store were surprised by a bear cub scurrying down the aisles this past weekend. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins