Featured Research

from universities, journals, and other organizations

Proteins: New class of materials discovered

Date:
August 22, 2014
Source:
Helmholtz-Zentrum Berlin für Materialien und Energie
Summary:
Scientists have characterized a new class of materials called protein crystalline frameworks. Thanks to certain helper substances, in PCFs proteins are fixated in a way so as to align themselves symmetrically, forming highly stable crystals.

Arrangement of protein concanavalin A molecules in two different protein crystalline frameworks.
Credit: Fudan University/HZB

Scientists at the Helmholtz Center Berlin (HZB) along with researchers at China's Fudan University have characterized a new class of materials called protein crystalline frameworks (PCFs).

Thanks to certain helper substances, in PCFs proteins are fixated in a way so as to align themselves symmetrically, forming highly stable crystals. Next, the HZB and Fudan University researchers are planning on looking into how PCFs may be used as functional materials. Their findings are being published today in the scientific journal Nature Communications.

Proteins are sensitive molecules. Everyone knows that -- at least from having boiled eggs. Under certain circumstances -- like immersion in boiling water -- they denature, losing their natural shape, and becoming hard. True, researchers have been able to handle these substances for some time now, even to the point of crystallizing them in their native state. Admittedly, though, this does require considerable effort, but it is the only way how researchers can find out the structure of these substances at high resolution. Moreover, protein crystals are extremely fragile, highly sensitive and hard to handle.

Now, for the first time ever, scientists at China's Fudan University have managed to work around these downsides by linking the protein concanavalin A to helper molecules belonging to the sugar family, and to the dye rhodamin. The concanavalin molecules that have been thus fixated tended to arrange themselves symmetrically within the helper molecule framework, forming crystals, in which the proteins achieve high stability and are intricately interconnected -- into a protein crystalline framework.

Developing molecular structures like these is pointless unless you know exactly how they form and what their structure looks like at the level of the atoms. During the quest for suitable experimental methods, the Shanghai researchers turned to a Chinese scientist working at the HZB for help. She called her colleagues' attention to the MX beamlines at the HZB's electron storage ring BESSY II.

"Here at the HZB, we were able to offer them our highly specialized crystallography stations -- the perfect venue for characterizing PCFs at high resolutions," says Dr. Manfred Weiss, one of the leading scientists working at the HZB-MX laboratory. It quickly became clear that the helper molecules even allowed the researchers to decide how powerfully they wanted them to penetrate the protein frameworks. "This gives the PCFs a great deal of flexibility and variability, which we'll always keep in mind when doing research on potential applications," says Manfred Weiss.


Story Source:

The above story is based on materials provided by Helmholtz-Zentrum Berlin für Materialien und Energie. Note: Materials may be edited for content and length.


Journal Reference:

  1. Fuji Sakai, Guang Yang, Manfred S. Weiss, Yijiang Liu, Guosong Chen, Ming Jiang. Protein crystalline frameworks with controllable interpenetration directed by dual supramolecular interactions. Nature Communications, 2014; 5: 4634 DOI: 10.1038/ncomms5634

Cite This Page:

Helmholtz-Zentrum Berlin für Materialien und Energie. "Proteins: New class of materials discovered." ScienceDaily. ScienceDaily, 22 August 2014. <www.sciencedaily.com/releases/2014/08/140822094144.htm>.
Helmholtz-Zentrum Berlin für Materialien und Energie. (2014, August 22). Proteins: New class of materials discovered. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2014/08/140822094144.htm
Helmholtz-Zentrum Berlin für Materialien und Energie. "Proteins: New class of materials discovered." ScienceDaily. www.sciencedaily.com/releases/2014/08/140822094144.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) — China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins