Science News
from research organizations

New Superconductor Study Confirms, Extends Nobel Theory

Date:
November 7, 2003
Source:
National Institute Of Standards And Technology (NIST)
Summary:
The behavior of intermetallic superconductors, like the kind used in hospital MRI machines, is even more curious than recent Nobel Prize-winning physicist Alexei Abrikosov had theorized.
Share:
FULL STORY

The behavior of intermetallic superconductors, like the kind used in hospital MRI machines, is even more curious than recent Nobel Prize-winning physicist Alexei Abrikosov had theorized. In newly reported research,* scientists working at the National Institute of Standards and Technology (NIST) Center for Neutron Research have determined that so-called type II superconductors have the equivalent of a multiple personality---at least three distinct physical states, each with its own superconducting behavior. The result should help engineers design new materials for stronger, more efficient superconducting magnets.

Nearly 50 years ago, Abrikosov predicted that superconductors could retain superconductivity in a very strong magnetic field by forming tiny eddies of current. These vortices allow the field to pass through without disrupting the current, until a certain threshold is reached and the resistance-free flow of electrons ceases. Just before the collapse, however, the materials undergo a dramatic spike in current, called the peak effect.

Over a wide range of temperatures and magnetic field strengths, Brown University and NIST scientists tracked the movements of current eddies in a prototype type II superconductor, niobium. Their experiments yielded a phase diagram, a kind of a map that shows how current vortices rearrange in response to changes in temperature and magnetic field.

The study confirmed an earlier set of the team's findings, but also revealed richer, more complex behavior. The recent work verified that the peak-effect jump in current corresponds to an abrupt change in the vortex arrangement--similar to the transformation that occurs when ice melts. They also provide the first experimental confirmation of Abrikosov's prediction that a smooth phase transition occurs for conditions that don't produce the peak effect.

For further information see: http://www.brown.edu/Administration/News_Bureau/2003-04/03-048.html.

* S. R. Park, S. M. Choi, D. C. Dender, J. W. Lynn, X. S. Ling, “Fate of the Peak Effect in a Type-II Superconductor: Multicriticality in the Bragg-Glass Transition.” Physical Review Letters, 91, 167003 (2003)


Story Source:

Materials provided by National Institute Of Standards And Technology (NIST). Note: Content may be edited for style and length.


Cite This Page:

National Institute Of Standards And Technology (NIST). "New Superconductor Study Confirms, Extends Nobel Theory." ScienceDaily. ScienceDaily, 7 November 2003. <www.sciencedaily.com/releases/2003/11/031107060145.htm>.
National Institute Of Standards And Technology (NIST). (2003, November 7). New Superconductor Study Confirms, Extends Nobel Theory. ScienceDaily. Retrieved May 22, 2017 from www.sciencedaily.com/releases/2003/11/031107060145.htm
National Institute Of Standards And Technology (NIST). "New Superconductor Study Confirms, Extends Nobel Theory." ScienceDaily. www.sciencedaily.com/releases/2003/11/031107060145.htm (accessed May 22, 2017).

RELATED STORIES