New! Sign up for our free email newsletter.
Science News
from research organizations

Curbing C. Difficile's Toxin Production

Date:
September 8, 2007
Source:
Tufts University, Health Sciences
Summary:
Researchers have discovered how the protein CodY controls toxin production of Clostridium difficile, a bacterium that has caused epidemics of severe diarrhea in hospital patients. In its search for food, C. difficile releases toxins that cause diarrhea and in rare cases death. Gaining a better understanding of how CodY prevents C. difficile from making toxins may lead to future drug development based on the properties of CodY.
Share:
FULL STORY

As if being admitted to the hospital weren't bad enough, patients, once admitted, are at higher risk of becoming infected with a "superbug" bacterium, Clostridium difficile (C. difficile). The toxins produced by C. difficile kill human intestinal cells by causing them to burst open, allowing the bacteria to use them as fuel.

This results in severe diarrhea and, in rare cases, death. Abraham "Linc" Sonenshein, PhD, and colleagues from the Department of Molecular Biology and Microbiology at the Tufts University School of Medicine (TUSM) and the Sackler School of Graduate Biomedical Sciences at Tufts, have discovered how a protein called CodY regulates the genes that control production of the dangerous toxins. Understanding the relationship between CodY and C. difficile is an important step toward the development of a drug that may prevent hospital patients from falling ill.

"The C. difficile bacteria only produce toxins when they are in need of food," explains Sonenshein, professor of microbiology at TUSM and corresponding author on the paper to be published in Molecular Microbiology. "We found that the CodY protein, in essence, monitors the hunger level of C. difficile, preventing toxin production when the bacteria have enough to eat." Sonenshein, along with first author Sean Dineen, PhD, and other Tufts colleagues developed a series of experiments to investigate the importance of CodY and how this protein communicates to bacteria that it is time to search for new sources of food.

The researchers first developed a mutant strain of C. difficile bacteria that does not make the protein CodY, and compared the amount of toxin produced by the mutant strain of bacteria to the amount of toxin produced by normal bacteria. The mutant strain produced much higher levels of toxin.

The presence of CodY seems to tell the bacterial cells that they are well-fed and there is no reason to make toxin that kills intestinal cells for fuel. Lack of CodY activity, however, indicates to the bacteria that they are lacking key nutrients and that it is time to make the toxins they need to get food from the host cells.

To determine how CodY tells the bacteria not to make toxins, Sonenshein and colleagues removed DNA from the bacteria, and observed the interaction of the DNA and the CodY protein in vitro. They found that CodY targeted the region of the bacterial chromosome that includes the toxin genes. "When CodY senses that the cell has enough nutrients, it binds to this gene region, and prevents the bacterium from making toxin," says Sonenshein. "Conversely, when food is scarce, the CodY protein does not bind to these genes, allowing C. difficile to make the toxins needed to attack intestinal cells."

Knowing what turns on, and more importantly, what turns off the toxin-producing genes in C. difficile opens the door for treatment and prevention options. "It is possible that, based on our findings, a new drug could be developed that would trick CodY into thinking there is enough fuel for the bacteria, causing CodY to remain bound to the toxin gene region and thus suppressing toxin production."

The study was supported by the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, US Public Health Service, Department of Health and Human Services.

Reference: Dineen SS, Villapakkam AC, Nordman JT, and Sonenshein AL. Molecular Microbiology. 2007. Early online edition; doi: 10.1111/j.1365-2958.2007.05906.x "Repression of Clostridium difficile toxin gene expression by CodY."


Story Source:

Materials provided by Tufts University, Health Sciences. Note: Content may be edited for style and length.


Cite This Page:

Tufts University, Health Sciences. "Curbing C. Difficile's Toxin Production." ScienceDaily. ScienceDaily, 8 September 2007. <www.sciencedaily.com/releases/2007/09/070905095328.htm>.
Tufts University, Health Sciences. (2007, September 8). Curbing C. Difficile's Toxin Production. ScienceDaily. Retrieved April 20, 2024 from www.sciencedaily.com/releases/2007/09/070905095328.htm
Tufts University, Health Sciences. "Curbing C. Difficile's Toxin Production." ScienceDaily. www.sciencedaily.com/releases/2007/09/070905095328.htm (accessed April 20, 2024).

Explore More

from ScienceDaily

RELATED STORIES